Managing cellular security systems

November 30, 2012
Microscopic image of a mouse cDC. Credit: 2012 Katsuaki Sato, RIKEN Research Center for Allergy and Immunology

Conventional dendritic cells (cDCs) are the immune system's patrol. They recognize foreign threats and trigger a defensive response, while restraining immune reactions against inappropriate targets like host proteins. They achieve the former via a mechanism called cross-presentation, which displays pieces of pathogens to cytotoxic T lymphocytes (CTLs)—the immune system's 'attack dogs'—while the latter function relies on cDC interactions with regulatory T (Treg) cells.

Katsuaki Sato's group at the RIKEN Research Center for Allergy and Immunology in Yokohama recently identified a subset of cDCs with an especially important role in fighting infection. These cells can be classified based on the proteins they show on their surface and Sato's team became especially interested in cDCs featuring a protein called CD205. "CD205+ cDCs are more efficient in the cross-presentation of cell-bound or soluble antigens to CTLs than other dendritic cell subsets," explains Sato. "However, their role in the immune system under physiological conditions was unclear."

To clarify the function of these cDCs, Sato and colleagues genetically engineered mice in which CD205+ cDCs could be quickly and selectively killed off via injection with . This depletion lasted for several days, giving the researchers a powerful way to study the specific contribution of these cells to immune function. Initial experiments with the mice provided compelling evidence that CD205+ cDCs are required to marshal an effective CTL response. Loss of these cells also resulted in abnormal Treg levels in various tissues, indicating that CD205+ cDCs are required to maintain appropriate levels of other T throughout the body.

Animals infected with high doses of the Listerium monocytogenes normally perish quickly due to septic shock resulting from immune overreaction, but CD205+ cDC-deficient animals proved resistant to and tended to survive longer, revealing a crippled inflammatory response. In the end, however, these animals were more vulnerable to bacterial infection and proliferation, resulting from impaired cDC cross-presentation of bacterial antigens to CTLs. The researchers observed similar effects with viral infection.

These results position CD205+ cDCs at a critical juncture for regulating overall immune system function as well as directed counterattacks against pathogens and the researchers see clear potential for exploiting these cells in clinical applications. "Further elucidation of CD205+ cDC function might provide insights into immune regulation and pathology and aid therapeutic interventions for infectious diseases as well as autoimmune and inflammatory disorders," says Sato. "For example, we would like to develop vaccines that selectively target CD205+ cDCs with bacterial and viral antigens."

Explore further: Skin sentry cells promote distinct immune responses

More information: Fukaya, et al. Conditional ablation of CD205+ conventional dendritic cells impacts the regulation of T-cell immunity and homeostasis in vivo. Proceedings of the National Academy Sciences 109, 11288–11293 (2012).

Related Stories

Skin sentry cells promote distinct immune responses

July 21, 2011

A new study reveals that just as different soldiers in the field have different jobs, subsets of a type of immune cell that polices the barriers of the body can promote unique and opposite immune responses against the same ...

How excess alcohol depresses immune function

August 16, 2011

Alcoholism suppresses the immune system, resulting in a high risk of serious, and even life-threatening infections. A new study shows that this effect stems largely from alcohol’s toxicity to immune system cells called ...

Recommended for you

Gut microbes signal to the brain when they are full

November 24, 2015

Don't have room for dessert? The bacteria in your gut may be telling you something. Twenty minutes after a meal, gut microbes produce proteins that can suppress food intake in animals, reports a study published November 24 ...

New findings offer hope for diabetic wound healing

November 23, 2015

University of Notre Dame researchers have discovered a compound that accelerates diabetic wound healing, which may open the door to new treatment strategies. Non-healing chronic wounds are a major complication of diabetes, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.