New research sheds light on childhood neuromuscular disease

November 20, 2012

A study by scientists at the Motor Neuron Center at Columbia University Medical Center suggests that spinal muscular atrophy (SMA), a genetic neuromuscular disease in infants and children, results primarily from problems in the motor circuits that coordinate muscle movement. Previously, researchers thought that motor neurons or muscle cells were responsible.

In a second study, researchers at the Motor Neuron Center identified the molecular pathway in SMA that leads to problems with motor function. Findings from the studies could lead to therapies for the debilitating and often fatal neuromuscular disease.

"To our knowledge, this is the first clear demonstration that defects in the function of a neuronal circuit are the cause of a neurological disease," Dr. Brian McCabe, assistant professor of pathology and cell biology, said about the first study.

Both studies were published online Oct. 11 in the journal Cell.

SMA is a hereditary neuromuscular disease characterized by and weakness. There is no treatment for SMA, which is estimated to affect as many as 10,000 to 25,000 children and adults in the United States and is the leading genetic cause of death in infants.

Based on the findings of McCabe and his colleagues, the SMA Clinical Research Center at CUMC launched a clinical trial last July of a potassium channel blocker called dalfampridine for the treatment of patients with SMA. The drug is currently marketed under the brand name Ampyra for multiple sclerosis. "This drug is unlikely to be a cure for SMA, but we hope it will benefit patient symptoms," McCabe said.

Explore further: Researchers identify genetic mutation causing rare form of spinal muscular atrophy

Related Stories

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.