A more complicated network than generally accepted may control maturation of B cells in the immune system

Fluorescently labeled early B cell progenitors. Credit: 2012 Wooseok Seo, RIKEN Research Center for Allergy and Immunology

The process of blood cell development, known as hematopoiesis, gives rise to numerous different immune cell subtypes. Each of these in turn matures through a stepwise process governed by the action of transcription factors—specialized proteins that coordinate activation and deactivation of specific target genes. 

Antibody-secreting B lymphocytes develop via a well-studied mechanism, but research from Ichiro Taniuchi's team at the RIKEN Center for Allergy and Immunology in Yokohama injects new complexity into this model. The current mechanism involves three —E2A, Ebf1 and Pax5—that progressively set the stage for maturation of functional B lymphocytes. "Not only does this trio of transcription factors function sequentially, but each one is also responsible for the expression of the next," explains Wooseok Seo, a researcher in Taniuchi's laboratory and lead author of the study. "E2A is required for the expression of Ebf1, and so on."

Seo and Taniuchi were studying another transcription factor, Runx1, which is a critical component of blood cell development. Without Runx1, hematopoiesis cannot take place. The researchers therefore decided to study its role in B cell development by engineering a genetically modified mouse that expresses Runx1 in every cell except early stage B cell precursors.

Without Runx1, these cells stalled early in development, at essentially the same stage where Ebf1 exerts its effects. Seo and colleagues determined that Runx1, in partnership with the Cbfβ protein, normally binds to the promoter sequence that regulates Ebf1 production. Interestingly, Ebf1 has two distinct promoters; and, Runx1-Cbfβ and E2A each bind a different promoter of Ebf1. "Our hypothesis is that E2A and Runx1 might be distinctive, but not necessarily exclusive, in their mode of function," says Seo.

In the absence of Runx1, Ebf1 gene activity is drastically reduced, preventing downstream induction of the 'final step' in B . However, Runx1 also appears to activate a 'positive feedback' loop by switching on the gene encoding its upstream activator, E2A, thereby accelerating the process of B cell differentiation. Without Runx1, therefore, none of the three differentiation factors are properly expressed. 

These findings suggest that earlier models of this process may be greatly oversimplified. "We propose that the simple hierarchy model of this trio of transcriptional factors for development might not be true, and suggest a more complicated network," says Seo. He and his colleagues are now exploring the mechanisms Runx1 employs to control , and how these enable it to exert such a potent influence on hematopoietic development.

More information: Seo, W., Ikawa, T., Kawamoto, H. & Taniuchi, I. Runx1–Cbfβ facilitates early B lymphocyte development by regulating expression of Ebf1. The Journal of Experimental Medicine 209, 1255–1262 (2012). jem.rupress.org/content/early/… em.20112745.abstract

add to favorites email to friend print save as pdf

Related Stories

Researchers Unlock Molecular Origin of Blood Stem Cells

Jan 09, 2009

(PhysOrg.com) -- A research team led by Nancy Speck, PhD, Professor of Cell and Developmental Biology at the University of Pennsylvania School of Medicine, has identified the location and developmental timeline ...

Regulating hematopoietic differentiation

Oct 05, 2012

Blood cells originate from a small pool of hematopoietic stem cells (HSCs) through a complex process of differentiation steps that are tightly regulated at the transcriptional level. Dissecting the mechanisms ...

Recommended for you

Rapid test to diagnose severe sepsis

47 minutes ago

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments