Early changes in liver function could detect life-threatening infection

November 13, 2012

Early changes in liver function detected by novel techniques can identify severe infection (sepsis) hours after onset and so could have important implications for the treatment of patients who are critically ill, according to a groundbreaking study by European researchers published in this week's PLOS Medicine.

Almost half of all people who develop severe sepsis die as this life-threatening condition often develops quickly and is often diagnosed too late to save the patient's life.

In this study, the authors from Austria, Germany, and the UK, led by Peter Recknagel from Jena University Hospital in Germany, used experimental laboratory work in , genetically modified mice and rats, and studies carried out in critically ill patients to shed light on the mechanisms behind severe sepsis.

They found that in animal models, is an early sign of sepsis and that a process known as signalling (which is involved in several immune processes) plays a crucial role in the development of liver dysfunction. The authors also found that all aspects of detoxification by the liver are affected during sepsis, a finding which suggests that clinical outcomes are linked to the severity of these liver changes.

The clinical information included in the study from 48 patients with severe sepsis also supports the finding from the animal models and suggests that might help in the early diagnosis of sepsis and also provide information about possible clinical outcomes. As many medicines are broken down in the liver, these findings suggest that giving certain drugs to patients with severe sepsis may further damage the liver.

The authors explain their findings: "Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis."

They continue: "Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids."

The authors conclude; "These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice."

In an accompanying Perspective, John Marshall, a critical care expert from the University of Toronto (uninvolved in the study), says: "The hybrid translational model embodied in the work reported here by Bauer and colleagues not only provides a valuable new insight into the pathogenesis of liver derangements in sepsis, but even more importantly, establishes a model that should be welcomed and embraced by scientists working in the field."

Explore further: Statins may stave off septic lung damage says new research study

More information: Recknagel P, Gonnert FA, Westermann M, Lambeck S, Lupp A, et al. (2012) Liver Dysfunction and Phosphatidylinositol-3-Kinase Signalling in Early Sepsis: Experimental Studies in Rodent Models of Peritonitis. PLoS Med 9(11): e1001338. doi:10.1371/journal.pmed.1001338

Related Stories

Quicker detection and treatment of severe sepsis

May 23, 2011

Sepsis is the name of an infection that causes a series of reactions in the body, which in the worst case can prove fatal. The problem for both patients and doctors is that the early symptoms are difficult to distinguish ...

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.