Immune cell migration is impeded in Huntington's disease

November 19, 2012

Huntington disease (HD) is an incurable neurodegenerative disease caused by a mutation in the huntingtin gene (htt). Though most of the symptoms of HD are neurological, the mutant HTT protein is expressed in non-neural cells as well.

In this issue of the , researchers led by Paul Muchowski at the J. David Gladstone Institutes in San Franscisco examined the role of immune cells in HD.

Immune cells known as microglia, which were isolated from the brains of HD mice, as well as immune cells from the peripheral blood were found to be defective in their ability to migrate.

Interestingly, the immune cell defects were apparent prior to the onset of HD symptoms.

This study suggests that changes in may underlie some of the symptoms of HD.

Explore further: Toxic protein build-up in blood shines light on Huntington's disease

More information: Mutant huntingtin impairs immune cell migration in Huntington disease, Published in Volume 122, Issue 12 (December 3, 2012)
J Clin Invest. 2012;122(12):4737–4747. doi:10.1172/JCI64484

Abstract
In Huntington disease (HD), immune cells are activated before symptoms arise; however, it is unclear how the expression of mutant huntingtin (htt) compromises the normal functions of immune cells. Here we report that primary microglia from early postnatal HD mice were profoundly impaired in their migration to chemotactic stimuli, and expression of a mutant htt fragment in microglial cell lines was sufficient to reproduce these deficits. Microglia expressing mutant htt had a retarded response to a laser-induced brain injury in vivo. Leukocyte recruitment was defective upon induction of peritonitis in HD mice at early disease stages and was normalized upon genetic deletion of mutant htt in immune cells. Migration was also strongly impaired in peripheral immune cells from pre-manifest human HD patients. Defective actin remodeling in immune cells expressing mutant htt likely contributed to their migration deficit. Our results suggest that these functional changes may contribute to immune dysfunction and neurodegeneration in HD, and may have implications for other polyglutamine expansion diseases in which mutant proteins are ubiquitously expressed.

Related Stories

Recommended for you

The 'love hormone' may quiet tinnitus

September 23, 2016

(HealthDay)—People suffering from chronic ringing in the ears—called tinnitus—may find some relief by spraying the hormone oxytocin in their nose, a small initial study by Brazilian researchers suggests.

Bile acid uptake inhibitor prevents NASH / fatty liver in mice

September 21, 2016

Drugs that interfere with bile acid recycling can prevent several aspects of NASH (nonalcoholic steatohepatitis) in mice fed a high-fat diet, scientists from Emory University School of Medicine and Children's Healthcare of ...

New therapeutic target for Crohn's disease

September 20, 2016

Research from the Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a promising new target for future drugs to treat inflammatory bowel disease (IBD). The study, published today in Cell Reports, also indicates ...

Arthritis drug may help with type of hair loss

September 22, 2016

(HealthDay)—For people who suffer from a condition that causes disfiguring hair loss, a drug used for rheumatoid arthritis might regrow their hair, a new, small study suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.