Loss of essential blood cell gene leads to anemia

November 7, 2012

Researchers at Brigham and Women's Hospital (BWH) have discovered a new gene that regulates hemoglobin synthesis during red blood cell formation. The findings advance the biomedical community's understanding and treatment of human anemias and mitochondrial disorders.

The study will be published online on November 7, 2012 in Nature.

The researchers used an unbiased zebrafish genetic screen to clone mitochondrial ATPase inhibitory factor-1 gene, or Atpif1. The gene allows animals—zebrafish, mice and humans for instance—to efficiently make hemoglobin. Hemoglobin is the protein in red blood cells responsible for transporting oxygen in the blood.

The researchers found that loss of Atpif1 causes severe anemia. Moreover, the researchers uncovered a broader mechanistic role for Atpif1—regulating the of ferrochelatase, or Fech. Fech is the terminal enzyme in heme (a component of hemoglobin) synthesis.

"Our study has established a unique functional link between Atpif1-regulated mitochondrial pH, redox potential, and [2Fe-2S] cluster binding to Fech in modulating its heme synthesis," said Dhvanit Shah, PhD, BWH Division of Hematology, Department of Medicine, first study author.

The researchers were also able to produce data on the human version of Atpif1, noting its functional importance for normal red , and noting that a deficiency may contribute to human diseases, such as congenital sideroblastic anemias and other diseases related to dysfunctional mitochondria (the energy powerhouses of cells).

"Discovering the novel mechanism of Atpif1 as a regulator of heme synthesis advances the understanding of mitochondrial heme homeostasis and red blood cell development," said Barry Paw, MD, PhD, BWH Division of Hematology, Department of Medicine, senior study author.

Shah and Paw continue to identify new genes responsible for hematopoietic stem cell development and red cell differentiation. Their identification of new genes will elucidate the new mechanisms regulating hematopoiesis—the formation of blood cell components. Their work not only provides greater insight into human congenital anemias, but also new opportunities for improved therapies.

Anemia, a condition in which your blood has a lower than normal number of or hemoglobin levels, can affect people of all ages. Women of childbearing age and older adults are at higher risk. Babies and children are also at risk for due to nutritional iron deficiency or lead poisoning.

Explore further: Researchers discover pathway that eliminates genetic defects in red blood cells

Related Stories

MIT uncovers key blood protein

October 11, 2007

Scientists working in the only lab at MIT doing hematology research have uncovered a protein that plays a key role in the recycling of iron from blood.

Gene variant linked to moderated symptoms of beta-thalassemia

January 30, 2008

Beta-thalassemia is a serious, potentially life-threatening disease that affects red blood cells, cells that carry oxygen via hemoglobin throughout the body. As part of the SardiNIA Study of Aging, supported by the National ...

Gene therapy corrects sickle cell disease in laboratory study

December 3, 2008

Using a harmless virus to insert a corrective gene into mouse blood cells, scientists at St. Jude Children's Research Hospital have alleviated sickle cell disease pathology. In their studies, the researchers found that the ...

Genetic form of anemia defined molecularly

April 1, 2010

Sideroblastic anemia is a form of anemia caused by an inability to incorporate iron into hemoglobin, something that is essential if the molecule is to perform its vital function of carrying oxygen from the lungs to the tissues. ...

Recommended for you

In cells, some oxidants are needed

August 18, 2016

Within our bodies, high levels of reactive forms of oxygen can damage proteins and contribute to diabetic complications and many other diseases. But some studies are showing that these reactive oxygen species (ROS) molecules ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.