Loss of gene expression may trigger cardiovascular disease, researchers find

November 30, 2012 by Helen Dodson

(Medical Xpress)—A Yale-led team of researchers has uncovered a genetic malfunction that may lead to hardening of the arteries and other forms of cardiovascular disease. The study appears in the journal Cell Reports.

Fibroblast growth factors (FGFs), which spur the formation of new tissue and cells, have also recently emerged as key regulators of the vascular system. In studies of mice, the Yale team found that disruption of the FGF signaling process to the endothelium—the innermost lining of the heart and blood vessels—caused a state of FGF resistance and a cascade of other signaling malfunctions. Key among these malfunctions was a transition from endothelial to connective tissue, known as Endo-MT, which drove the formation of scar tissue build-up in the vessels—a condition called neointima.

Neointima formation underlies a number of common diseases, including narrowing of arteries and other valves after angioplasty or stent implantation, hypertension, atherosclerosis, and .

The researchers also found that one cause of the reduction in expression and activation of the FGF signaling cascade was vessel wall inflammation, which leads to in transplantation.

"Our research shows that the loss of FGF signaling, and resulting state of FGF resistance, is clearly associated with inflammation, and is caused by the expression of key ," said senior author Dr. Michael Simons, professor of cell biology at Yale School of Medicine and director of the Yale Cardiovascular Research Center. "This triggers the occurrence of Endo-MT, and buildup of scar tissue in the vessel wall, valves, and other tissues."

"Our results demonstrate that FGF signaling is required to maintain proper vascular homeostasis pathways, and suppression of formation of in vessels and tissue. The loss of FGF signaling input may be the root cause of a number most common ," explained Simons.

Explore further: Extending the effective lifetime of stents

Related Stories

Extending the effective lifetime of stents

October 6, 2011

Implanted stents can reopen obstructed arteries, but regrowth of cells into the vessel wall can entail restenosis. Research at LMU now shows that an antimicrobial peptide inhibits restenosis and promotes vascular healing. ...

Recommended for you

High-fat diet starves the brain

April 29, 2016

A high-fat diet of three days in mice leads to a reduction in the amount of glucose that reaches the brain. This finding was reported by a Research Group led by Jens Brüning, Director at the Max Planck Institute for Metabolism ...

A vitamin that stops the aging process of organs

April 28, 2016

Nicotinamide riboside (NR) is pretty amazing. It has already been shown in several studies to be effective in boosting metabolism. And now a team of researchers at EPFL's Laboratory of Integrated Systems Physiology (LISP), ...

Lifestyle has a strong impact on intestinal bacteria

April 28, 2016

Everything you eat or drink affects your intestinal bacteria, and is likely to have an impact on your health. That is the finding of a large-scale study led by RUG/UMCG geneticist Cisca Wijmenga into the effect of food and ...

Tiny microscopes reveal hidden role of nervous system cells

April 28, 2016

A microscope about the size of a penny is giving scientists a new window into the everyday activity of cells within the spinal cord. The innovative technology revealed that astrocytes—cells in the nervous system that do ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.