Neural interaction in periods of silence

November 21, 2012
This shows oscillations in the hippocampus: neural interactions during non-REM sleep and periods of silence. Credit: MPI for Biological Cybernetics

German neurophysiologists have developed a new method to study widespread networks of neurons responsible for our memory.

While in deep dreamless sleep, our hippocampus sends messages to our cortex and changes its plasticity, possibly transferring recently acquired knowledge to . But how exactly is this done? Scientists from the Max Planck Institute for Biological Cybernetics have now developed a novel multimodal methodology called "neural event-triggered functional magnetic resonance imaging" (NET-fMRI) and presented the very first results obtained using it in experiments with both anesthetized and awake, behaving monkeys. The new methodology uses multiple-contact electrodes in combination with functional magnetic resonance imaging (fMRI) of the entire brain to map widespread networks of neurons that are activated by local, structure-specific neural events.

Many invasive studies in and clinical investigations in human patients have demonstrated that the hippocampus, one of the oldest, most primitive brain structures, is largely responsible for the long term retention of information regarding places, specific events, and their contexts, that is, for the retention of so-called declarative memories. Without the hippocampus a person may be able to learn a manual task over a period of days, say, playing a simple instrument, but – remarkably – such a skill is acquired in the absence of any memory of having practiced the task before.

The consolidation of is thought to occur in two subsequent steps. During the first step, the encoding phase, hippocampus rapidly binds neocortical representations to local , while during subsequent "off-line" periods of calmness or sleep the new traces are concurrently reactivated in both hippocampus and cortex to strengthen the cortico-cortical connections underlying learned representations. But what is the of this hippocampal-cortical dialog, and how does hippocampus communicate with the rest of the brain?

For the very first time, Nikos Logothetis, director of the Department for Physiology of Cognitive Processes at the Max Planck Institute for and his team used so-called neural event triggered (NET-fMRI) in both anesthetized and awake, behaving monkeys to characterize the brain areas that consistently increased or decreased their activity in relationship to a certain type of fast hippocampal oscillations known as ripples. Ripples occur primarily during deep sleep and can be measured with electrophysiological methods. Using intracranial recordings of field potentials, the scientists demonstrated that the short periods of aperiodic, recurrent ripples are closely associated with reproducible cortical activations that occur concurrently with extensive activity suppression in other brain structures.

Interestingly, structures were suppressed whose activities could, in principle, interfere with the hippocampal-cortical dialog. The suppression of activity in the thalamus, for instance, reduces signals related to sensory processing, while the suppression of the basal ganglia, the pontine region and the cerebellar cortex may reduce signals related to other memory systems, such as that underlying procedural learning, for example riding a bicycle.

The aforementioned findings offer revealing insights into the large-scale organization of memory, a cognitive capacity emerging from the activation of widespread neural networks which were impossible to study in depth before now using either functional imaging alone or traditional single neuron recordings. Capacities such as perception, attention, learning and memory are actually best investigated using multimodal methodologies such as the NET-fMRI method employed in the MPI study. It is difficult to overstate the importance of the study of the neural mechanisms underlying such capacities, as the vast majority of neurological failures actually reflect dysfunctions of large-scale networks, including cortical and subcortical structures.

Explore further: Reduction of excess brain activity improves memory in amnestic mild cognitive impairment

More information: Logothetis, N.K., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H.C., Besserve, M., Oeltermann, A. (2012) Hippocampal-cortical Interaction during Periods of Subcortical Silence. Nature, doi: 10.1038/nature11618

Related Stories

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 22, 2012
Without the hippocampus a person may be able to learn a manual task over a period of days, say, playing a simple instrument, but – remarkably – such a skill is acquired in the absence of any memory of having practiced the task before.

Correct. Kudos.
Imagine a newborn's first breath as "task".
A newborn's sleep is proportionally the greatest time factor of all 'activities'(besides breathing.)
A possible insight from your research to explain SIDS -
Sudden infant death syndrome.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.