Hunting neuron killers in Alzheimer's and traumatic brain injury

November 9, 2012

Levels of the protein appoptosin in the brain skyrocket in Alzheimer's disease and traumatic brain injury. Appoptosin is known for helping the body make heme, the molecule that carries iron in the blood. In a study published Oct. 31 in the Journal of Neuroscience, Huaxi Xu, Ph.D. and his group at Sanford-Burnham Medical Research Institute discovered that excess heme leads to the overproduction of reactive oxygen species and triggers apoptosis, causing neurons to die.

Dying neurons lead to cognitive impairment and memory loss in patients with neurodegenerative disorders–conditions like Alzheimer's disease and . To better diagnose and treat these neurological conditions, scientists first need to better understand the underlying causes of .

Enter Huaxi Xu, Ph.D., professor in Sanford-Burnham's Del E. Webb Neuroscience, Aging, and Center. He and his team have been studying the protein appoptosin and its role in neurodegenerative disorders for the past several years. Appoptosin levels in the brain skyrocket in conditions like Alzheimer's and stroke, and especially following traumatic brain injury.

Appoptosin is known for its role in helping the body make heme, the molecule that carries iron in our blood (think "hemoglobin," which makes blood red). But what does heme have to do with dying ? As Xu and his group explain in a paper they published October 31 in the , excess heme leads to the overproduction of , which include cell-damaging and peroxides, and triggers apoptosis, the carefully regulated process of . This means that more appoptosin and more heme cause neurons to die.

Not only did Xu and his team unravel this whole appoptosin-heme-neurodegeneration mechanism, but when they inhibited appoptosin in laboratory , they noticed that the cells didn't die. This finding suggests that appoptosin might make an interesting new therapeutic target for neurodegenerative disorders.

What's next? Xu and colleagues are now probing appoptosin's function in mouse models. They're also looking for new therapies that target the protein.

"Since the upregulation of appoptosin is important for cell death in diseases such as Alzheimer's, we're now searching for small molecules that modulate appoptosin expression or activity. We'll then determine whether these compounds may be potential drugs for Alzheimer's or other neurodegenerative diseases," Xu explains.

Putting a stop to runaway appoptosin won't be easy, though. That's because we still need the heme-building protein to operate at normal levels for our blood to carry iron. In a previous study, researchers found that a mutation in the gene that encodes appoptosin causes anemia. "Too much of anything is bad, but so is too little," Xu says.

New therapies that target neurodegenerative disorders and traumatic brain injury are sorely needed. According to the CDC, approximately 1.7 million people sustain a traumatic brain injury each year. It's an acute injury, but one that can also lead to long-term problems, causing epilepsy and increasing a person's risk for Alzheimer's and Parkinson's diseases. Not only has traumatic brain injury become a worrisome problem in youth and professional sports in recent years, the Department of Defense calls traumatic brain injury "one of the signature injuries of troops wounded in Afghanistan and Iraq."

Explore further: New understanding of brain chemistry could prevent brain damage after injury

More information: Zhang H, Zhang YW, Chen Y, Huang X, Zhou F, Wang W, Xian B, Zhang X, Masliah E, Chen Q, Han JD, Bu G, Reed JC, Liao FF, Chen YG, & Xu H (2012). Appoptosin is a Novel Pro-Apoptotic Protein and Mediates Cell Death in Neurodegeneration. The Journal of Neuroscience : the official journal of the Society for Neuroscience, 32 (44), 15565-15576 PMID: 23115192

Related Stories

Researchers 'switch off' neurodegeneration in mice

May 8, 2012

Researchers at the Medical Research Council (MRC) Toxicology Unit at the University of Leicester have identified a major pathway leading to brain cell death in mice with neurodegenerative disease. The team was able to block ...

Brain enzyme is double whammy for Alzheimer's disease

August 20, 2012

The underlying causes of Alzheimer's disease are not fully understood, but a good deal of evidence points to the accumulation of β-amyloid, a protein that's toxic to nerve cells. β-amyloid is formed by the activity ...

Recommended for you

Study identifies how brain connects memories across time

May 23, 2016

Using a miniature microscope that opens a window into the brain, UCLA neuroscientists have identified in mice how the brain links different memories over time. While aging weakens these connections, the team devised a way ...

The brain needs cleaning to stay healthy

May 26, 2016

Research led by the Achucarro Basque Center for Neuroscience, the University of the Basque Country (UPV/EHU), and the Ikerbasque Foundation has revealed the mechanisms that keep the brain clean during neurodegenerative diseases.

Neuroscientists illuminate role of autism-linked gene

May 25, 2016

A new study from MIT neuroscientists reveals that a gene mutation associated with autism plays a critical role in the formation and maturation of synapses—the connections that allow neurons to communicate with each other.

Teen brains facilitate recovery from traumatic memories

May 25, 2016

Unique connections in the adolescent brain make it possible to easily diminish fear memories and avoid anxiety later in life, according to a new study by Weill Cornell Medicine researchers. The findings may have important ...

Mimicking deep sleep brain activity improves memory

May 26, 2016

It is not surprising that a good night's sleep improves our ability to remember what we learned during the day. Now, researchers at the RIKEN Brain Science Institute in Japan have discovered a brain circuit that governs how ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Tom_Hennessy
1 / 5 (2) Nov 09, 2012
One might wonder whether the expression of appoptosin is governed by the iron itself ? When there IS trauma or stroke , blood is spilled and this blood contains red blood cells which breakdown and release iron. Does the iron cause appoptosin to be expressed to AGAIN turn the iron into a new red blood cell ?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.