Scientists uncover a novel cooperative effort to stop cancer spread

November 28, 2012

(Medical Xpress)—Scientists from the Florida campus of The Scripps Research Institute (TSRI) have uncovered a group of what have been considered relatively minor regulators in the body that band together to suppress the spread of cancer from its primary site.

The discovery offers a fresh batch of possible therapeutic targets as well as new diagnostic tools with the potential to predict and inhibit the spread of cancer (metastasis) in patients suffering from the disease.

The research, published recently in The , was conducted by TSRI Professor Donald G. Phinney, a nationally recognized authority in the study of adult bone marrow-derived stem cells, and a postdoctoral fellow in his laboratory, Christopher L. Haga.

In the new study, the scientists found that a cluster of seven microRNAs (miRNA) function cooperatively to repress a process known as epithelial-to-mesenchymal transition (EMT). While EMT is part of the normal biology of cell development in some parts of the body, the process has recently been implicated in two dangerous aspects of tumor growth— and the growth of drug-resistant cancer .

MicroRNAs are tiny fragments of RNA found in all . They bind to messenger RNAs, a process that generally results in gene silencing. This cluster of miRNAs, located in a genetic region known as DLK1-DIO3, suppresses a specific signaling network in human cancers that primarily affect glands such as breast cancer.

"These results establish the DLKI-DIO3 miRNA cluster as a critical checkpoint regulating tumor growth and metastasis," said Phinney. "Our data shows that when this cluster is silenced, it accelerates tumorogenesis and proliferation by inducing EMT."

Silencing the DLK1-DIO3 genetic region is an early event for tumors, Phinney said, pointing out that micro-metastasis can be detected even in the early stages of .

One of the seven miRNAs highlighted in the new study—MiR-544—appears to be potent in its powers of inhibition, repressing cancer cell proliferation by inducing Ataxia telangiectasia mutated (ATM), a protein involved in stopping the cell cycle once DNA damage is detected.

"What's interesting is that MiR-544 blocks cell growth in every tumor cell line we've put it into, so we're looking at it as a potential ," Phinney said.

Phinney noted that dozens of miRNAs exist in the same genetic region. "It's possible there are other clusters that work together to affect and metastasis," he said.

Explore further: Researchers identify key role of microRNAs in melanoma metastasis

More information: "MicroRNAs in the Imprinted DLK1-DIO3 Region Repress the Epithelial-to-Mesenchymal Transition by Targeting the TWIST1 Signaling Network,"

Related Stories

Recommended for you

Combination therapy can prevent cytostatic resistance

November 26, 2015

Researchers at Karolinska Institutet have found a new way of preventing resistance to cytostatics used in the treatment of cancers such as medulloblastoma, the most common form of malignant brain tumour in children. The promising ...

Forecasting the path of breast cancer in a patient

November 23, 2015

USC researchers have developed a mathematical model to forecast metastatic breast cancer survival rates using techniques usually reserved for weather prediction, financial forecasting and surfing the Web.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.