Teenagers' brains affected by preterm birth

New research at the University of Adelaide has demonstrated that teenagers born prematurely may suffer brain development problems that directly affect their memory and learning abilities.

The research, conducted by Dr Julia Pitcher and Dr Michael Ridding from the University of Adelaide's Robinson Institute, shows reduced 'plasticity' in the brains of teenagers who were born preterm (at or before 37 weeks gestation).

The results of the research are published today in the Journal of Neuroscience.

"Plasticity in the brain is vital for throughout life," Dr Pitcher says. "It enables the brain to reorganize itself, responding to changes in environment, behavior and stimuli by modifying the number and strength of connections between neurons and different . Plasticity is also important for recovery from .

"We know from past research that preterm-born children often experience motor, cognitive and learning difficulties. The growth of the brain is rapid between 20 and 37 weeks gestation, and being born even mildly preterm appears to subtly but significantly alter brain microstructure, neural connectivity and neurochemistry.

"However, the mechanisms that link this altered brain physiology with behavioral outcomes - such as memory and learning problems - have remained unknown," Dr Pitcher says.

The researchers compared preterm adolescents with those born at term, and also with term-born adults. They used a non-invasive technique, inducing responses from the brain to obtain a measure of its plasticity. Levels of cortisol, normally produced in response to stress, were also measured to better understand the chemical and hormonal differences between the groups.

"Teenagers born preterm clearly showed reduced neuroplasticity in response to brain stimulation," Dr Pitcher says. "Surprisingly, even very modest was associated with a reduced . On the other hand, term-born teenagers were highly 'plastic' compared with adults and the preterm teens.

"Preterm teens also had low levels of cortisol in their saliva, which was highly predictive of this reduced brain responsiveness. People often associate increased cortisol with stress, but cortisol fluctuates up and down normally over each 24-hour period and this plays a critical role in learning, the consolidation of new knowledge into memory and the later retrieval of those memories. This might be important for the development of a possible therapy to overcome the neuroplasticity problem," she says.

Related Stories

Insulin sensitivity lower in adults born preterm

Sep 27, 2012

(HealthDay)—Middle-aged adults who were born preterm, even moderately preterm (32 to 36 weeks' gestation), are less insulin sensitive compared with adults who were born at term, according to research published ...

Recommended for you

Common infections tied to some stroke risk in kids

10 hours ago

A new study suggests that colds and other minor infections may temporarily increase stroke risk in children. The study found that the risk of stroke was increased only within a three-day period between a ...

Celebrities in 'Ice Bucket Challenge' to fight disease

21 hours ago

Steven Spielberg, Justin Bieber and Bill Gates are among many celebrities pouring buckets of ice water over their heads and donating to fight Lou Gehrig's disease, in a fundraising effort that has gone viral.

Study helps explain why elderly have trouble sleeping

22 hours ago

As people grow older, they often have difficulty falling asleep and staying asleep, and tend to awaken too early in the morning. In individuals with Alzheimer's disease, this common and troubling symptom ...

Targeted brain training may help you multitask better

Aug 20, 2014

The area of the brain involved in multitasking and ways to train it have been identified by a research team at the IUGM Institut universitaire de gériatrie de Montréal and the University of Montreal.

User comments