Teenagers' brains affected by preterm birth

November 13, 2012

New research at the University of Adelaide has demonstrated that teenagers born prematurely may suffer brain development problems that directly affect their memory and learning abilities.

The research, conducted by Dr Julia Pitcher and Dr Michael Ridding from the University of Adelaide's Robinson Institute, shows reduced 'plasticity' in the brains of teenagers who were born preterm (at or before 37 weeks gestation).

The results of the research are published today in the Journal of Neuroscience.

"Plasticity in the brain is vital for throughout life," Dr Pitcher says. "It enables the brain to reorganize itself, responding to changes in environment, behavior and stimuli by modifying the number and strength of connections between neurons and different . Plasticity is also important for recovery from .

"We know from past research that preterm-born children often experience motor, cognitive and learning difficulties. The growth of the brain is rapid between 20 and 37 weeks gestation, and being born even mildly preterm appears to subtly but significantly alter brain microstructure, neural connectivity and neurochemistry.

"However, the mechanisms that link this altered brain physiology with behavioral outcomes - such as memory and learning problems - have remained unknown," Dr Pitcher says.

The researchers compared preterm adolescents with those born at term, and also with term-born adults. They used a non-invasive technique, inducing responses from the brain to obtain a measure of its plasticity. Levels of cortisol, normally produced in response to stress, were also measured to better understand the chemical and hormonal differences between the groups.

"Teenagers born preterm clearly showed reduced neuroplasticity in response to brain stimulation," Dr Pitcher says. "Surprisingly, even very modest was associated with a reduced . On the other hand, term-born teenagers were highly 'plastic' compared with adults and the preterm teens.

"Preterm teens also had low levels of cortisol in their saliva, which was highly predictive of this reduced brain responsiveness. People often associate increased cortisol with stress, but cortisol fluctuates up and down normally over each 24-hour period and this plays a critical role in learning, the consolidation of new knowledge into memory and the later retrieval of those memories. This might be important for the development of a possible therapy to overcome the neuroplasticity problem," she says.

Related Stories

Premature birth may increase risk of epilepsy later in life

October 3, 2011

Being born prematurely may increase your risk of developing epilepsy as an adult, according to a new study published in the October 4, 2011, issue of Neurology, the medical journal of the American Academy of Neurology.

Insulin sensitivity lower in adults born preterm

September 27, 2012

(HealthDay)—Middle-aged adults who were born preterm, even moderately preterm (32 to 36 weeks' gestation), are less insulin sensitive compared with adults who were born at term, according to research published in the October ...

Recommended for you

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

Sleep makes our memories more accessible, study shows

July 27, 2015

Sleeping not only protects memories from being forgotten, it also makes them easier to access, according to new research from the University of Exeter and the Basque Centre for Cognition, Brain and Language. The findings ...

Static synapses on a moving structure: Mind the gap!

July 22, 2015

In biology, stability is important. From body temperature to blood pressure and sugar levels, our body ensures that these remain within reasonable limits and do not reach potentially damaging extremes. Neurons in the brain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.