ALS TDI and Gladstone Institutes collaborate to discover potential ALS treatments

December 4, 2012

The ALS Therapy Development Institute (ALS TDI) and the Gladstone Institutes today announced the formation of a research collaboration to speed the discovery of potential treatments for ALS through the preclinical drug development process.

"We are thrilled about the potential this collaboration holds to accelerate ALS therapeutic development," said Steve Perrin, PhD, CEO and Chief Scientific Officer at ALS TDI. "Both our organizations have unique infrastructures, and by linking them this way, we may be able to advance potential treatments faster than before."

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a neurodegenerative disease that leads to paralysis—and eventually death—due to the loss of in the spinal cord and brain. About 30,000 people in the United States live with the disease at any given time, and the global population of ALS patients is approximately 400,000. Approximately 5,000 new cases of ALS are diagnosed in the United States each year, and there is no known cause, cure or treatment to halt or reverse the disease. The average patient survives only two to five years following their diagnosis.

Under this new agreement, which starts immediately, Gladstone will evaluate potential using a human model of ALS. Gladstone generated the model by transforming from ALS patients into stem cells, known as induced (iPS cells), and then programming them into neurons. The technique builds on a discovery for which Shinya Yamanaka, MD, PhD, a Gladstone senior investigator, won the 2012 Nobel Prize in Physiology or Medicine.

This particular iPS-based ALS model includes a that produces TDP-43, a protein commonly found in most forms of ALS. Promising that pass the initial evaluation process at Gladstone will be fast-tracked for pre-clinical testing at ALS TDI, which will assess the compounds for activity and efficacy in various mouse models of human neurodegeneration.

"We hope our human model of ALS will help us to move quickly and effectively to identify promising therapeutic candidates for ALS," said Gladstone Senior Investigator Steve Finkbeiner, MD, PhD, who is also a professor of neurology and physiology at the University of California, San Francisco, with which Gladstone is affiliated. "The strong evidence that abnormal TDP-43 protein is involved in the development of ALS, coupled with models that may replicate ALS more faithfully than other tools, may speed development of therapies for the thousands of individuals diagnosed with this devastating disease."

Explore further: Potential new drug target in Lou Gehrig's disease

Related Stories

A drug-screening platform for ALS

August 2, 2012

A research group at the Center for iPS Cell Research and Application (CiRA) at Japan's Kyoto University has successfully recapitulated amyotrophic lateral sclerosis (ALS)-associated abnormalities in motor neurons differentiated ...

Recommended for you

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.