Spread of cancer cells may be slowed by targeting of protein

December 18, 2012

(Medical Xpress)—The spread of cancer cells may be slowed by targeting the protein km23-1, according to researchers at Penn State College of Medicine.

A motor protein that transports cargo within the cell, km23-1 is also involved in the movement or migration of cells. Migration is necessary for cancer to spread, so understanding this cell movement is important for development of better cancer treatments.

Kathleen Mulder, Ph.D., professor, biochemistry and molecular biology, looked for partner proteins that bind to and cooperate with km23-1 during cell movement, whichturned out to include factors that can control proteins actin and RhoA.

" is an important aspect of the process of a tumor spreading," Mulder said. "Changes in this process transform from local, noninvasive, confined cells to the migrating, cells."

Cells move through the body using the protein actin, which forms the structural frame of the cell, called the cytoskeleton. The actin creates a protrusion in the cell membrane by forming strands of thread-like fibers on the leading edge of the cell, pushing the cell forward. Several identified proteins regulate the reorganization of the and are more active in several types of cancers.

Overexpression of km23-1 increases actin , whereas when km23-1 is diminished, RhoA activity decreases. RhoA is known to be an important switch, activating processes in migration.

"By knowing that RhoA activity was decreased when km23-1 was reduced, we infer that km23-1 is needed for the regulation of these switches and has a role in cell movement," Mulder said.

To test this in the lab, km23-1 was reduced in a sample of human . When km23-1 was diminished, cancer cells migrated less. More research needs to be done, but km23-1 may be a promising target for anti-metastatic drugs and cancer therapies to slow the spread of the disease.

"By inhibiting km23-1, you inhibit events that contribute to the cells spreading to other parts of the body," Mulder said.

Results were reported in Biochemical and Biophysical Research Communications.

Other researchers are Qunyan Jin, Nageswara R. Pulipati, Cory M. Staub, of the Department of Biochemistry and Molecular Biology, Penn State College of Medicine; and Weidong Zhou and Lance A. Liotta, Center for Applied Proteomics and Molecular Medicine, George Mason University.

Funding was provided by the National Institutes of Health.

Explore further: Motor protein may offer promise in ovarian cancer treatment

Related Stories

Motor protein may offer promise in ovarian cancer treatment

April 26, 2011

(Medical Xpress) -- A motor regulatory protein can block human ovarian tumor growth, leading to eventual cancer cell death and possible new therapies to treat the disease, according to Penn State College of Medicine researchers.

Researchers find potential cancer roadblock

August 1, 2012

By identifying a key protein that tells certain breast cancer cells when and how to move, researchers at Michigan State University hope to better understand the process by which breast cancer spreads, or metastasizes.

Recommended for you

New role for an old protein: Cancer causer

September 3, 2015

A protein known to play a role in transporting the molecular contents of normal cells into and out of various intracellular compartments can also turn such cells cancerous by stimulating a key growth-control pathway.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.