Spread of cancer cells may be slowed by targeting of protein

(Medical Xpress)—The spread of cancer cells may be slowed by targeting the protein km23-1, according to researchers at Penn State College of Medicine.

A motor protein that transports cargo within the cell, km23-1 is also involved in the movement or migration of cells. Migration is necessary for cancer to spread, so understanding this cell movement is important for development of better cancer treatments.

Kathleen Mulder, Ph.D., professor, biochemistry and molecular biology, looked for partner proteins that bind to and cooperate with km23-1 during cell movement, whichturned out to include factors that can control proteins actin and RhoA.

" is an important aspect of the process of a tumor spreading," Mulder said. "Changes in this process transform from local, noninvasive, confined cells to the migrating, cells."

Cells move through the body using the protein actin, which forms the structural frame of the cell, called the cytoskeleton. The actin creates a protrusion in the cell membrane by forming strands of thread-like fibers on the leading edge of the cell, pushing the cell forward. Several identified proteins regulate the reorganization of the and are more active in several types of cancers.

Overexpression of km23-1 increases actin , whereas when km23-1 is diminished, RhoA activity decreases. RhoA is known to be an important switch, activating processes in migration.

"By knowing that RhoA activity was decreased when km23-1 was reduced, we infer that km23-1 is needed for the regulation of these switches and has a role in cell movement," Mulder said.

To test this in the lab, km23-1 was reduced in a sample of human . When km23-1 was diminished, cancer cells migrated less. More research needs to be done, but km23-1 may be a promising target for anti-metastatic drugs and cancer therapies to slow the spread of the disease.

"By inhibiting km23-1, you inhibit events that contribute to the cells spreading to other parts of the body," Mulder said.

Results were reported in Biochemical and Biophysical Research Communications.

Other researchers are Qunyan Jin, Nageswara R. Pulipati, Cory M. Staub, of the Department of Biochemistry and Molecular Biology, Penn State College of Medicine; and Weidong Zhou and Lance A. Liotta, Center for Applied Proteomics and Molecular Medicine, George Mason University.

Funding was provided by the National Institutes of Health.

Related Stories

Motor protein may offer promise in ovarian cancer treatment

Apr 26, 2011

(Medical Xpress) -- A motor regulatory protein can block human ovarian tumor growth, leading to eventual cancer cell death and possible new therapies to treat the disease, according to Penn State College of Medicine researchers.

Understanding the migration of cancer cells

Jun 23, 2008

[B]Activity of regulatory proteins for the growth of filopodia and lamelopodia clarified[/B] Lamellipodia are veil-shaped protrusions of the plasma membrane, that can turn into upward-curled ruffles if they fail to adhere to ...

Recommended for you

Generation of tanners see spike in deadly melanoma

48 minutes ago

(AP)—Stop sunbathing and using indoor tanning beds, the acting U.S. surgeon general warned in a report released Tuesday that cites an alarming 200 percent jump in deadly melanoma cases since 1973.

Penn team makes cancer glow to improve surgical outcomes

53 minutes ago

The best way to cure most cases of cancer is to surgically remove the tumor. The Achilles heel of this approach, however, is that the surgeon may fail to extract the entire tumor, leading to a local recurrence.

Cancer: Tumors absorb sugar for mobility

13 hours ago

Cancer cells are gluttons. We have long known that they monopolize large amounts of sugar. More recently, it became clear that some tumor cells are also characterized by a series of features such as mobility or unlikeliness ...

User comments