Development of new cornea endothelial cell lines provides powerful tool for understanding corneal cell biology

Human corneal endothelial cells (HCEnCs) form a monolayer of hexagonal cells whose main function is to maintain corneal clarity by regulating corneal hydration. Cell loss due to aging or corneal endothelial disorders, such as Fuchs dystrophy, can lead to cornea edema and blindness, resulting in the need for cornea transplants.

Studying human corneal endothelium has been difficult for because limited systems exist and have significant drawbacks. The major drawback is that HCEnC do not divide and there is a limited source of these cells both for patient transplantation and for study in the laboratory. This field of study is now easier.

Scientists from the Schepens Eye Research Institute, Mass. Eye and Ear, have developed of HCENC-21 and HCEnC-21T, two novel model systems for human corneal endothelium. Their findings, Telomerase Immortalization of Human Corneal Endothelial Cells Yield Functional Hexagonal Monolayers, are online in the .

A research team led by Ula Jurkunas, M.D., developed first-of their kind model systems for human corneal endothelium.

"These models mimic very well the critical characteristics and functionalities known from the tissue in the eye," Dr. Jurkunas said. "They also fulfill essential technical requirements, e.g. indefinite number of and a high rate of cell division, to be a powerful tool. They will enable cell biologists to more reliably study human corneal endothelium in health and disease. The ability to enhance HCEnC cell self renewal and growth opens a new window of development of novel regenerative therapies for corneal swelling, hopefully reducing the need for in the future."

More information: www.plosone.org/article/info%3… journal.pone.0051427

add to favorites email to friend print save as pdf

Related Stories

The role of stem cells in renewing the cornea

Oct 02, 2008

A group of researchers in Switzerland has published a study appearing in the Oct 1 advance online edition of the Journal Nature that shows how the cornea uses stem cells to repair itself.

Engineered cornea more resistant to chemical injury

May 28, 2012

(Medical Xpress) -- A new study from the University of Reading has established that a prosthetic cornea made from human cells is the best model for testing how irritants and toxins cause eye injuries.

Recommended for you

Team creates device to alleviate dry eye

Jan 26, 2015

A search for medical needs in eye clinics led Stanford Biodesign fellows to develop an implantable neurostimulator that painlessly increases natural tear production.

Scientists discover gene tied to profound vision loss

Jan 16, 2015

An exhaustive hereditary analysis of a large Louisiana family with vision issues has uncovered a new gene tied to an incurable eye disorder called retinitis pigmentosa, according to an examination led by ...

Eye surgeon uses stem cells to repair damaged corneas

Jan 14, 2015

In Hyderabad, India, Sayan Basu is using stem cells in a pilot project to restore the eyesight of patients with damaged corneas. If proven successful, the procedure could mean that Indian citizens can avoid ...

What you need to know about pediatric glaucoma

Jan 13, 2015

One evening, five years ago, Brittni Powell did what a lot of young mothers do and gazed into her 2-month-old son's eyes. What she saw had Brittni and her husband Byron heading immediately to a Montgomery-area hospital emergency ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.