Disruption of cellular signaling identified in pulmonary arterial hypertension

by Helen Dodson
Image via Shutterstock)

(Medical Xpress)—Impairment of a key signaling cascade in the pulmonary blood vessels plays an important role in pulmonary arterial hypertension, a Yale study has found. The study appears in the advance online publication of Nature Medicine.

(PAH) is a disease caused by an increase of blood pressure in the blood vessels of the lungs. If untreated, the majority of patients with the disease will succumb to and death.

PAH is characterized by the formation of lesions in the lungs composed of abnormally proliferating cells of the endothelium (cell tissue that lines blood vessels and the heart) and vascular smooth-muscle cells. Recent studies have described the role of the gene apelin in the signaling process that maintains normal pulmonary . Apelin levels have been found to be significantly reduced in patients with PAH.

The Yale team set out to discover the mechanism by which impaired apelin signaling triggers the abnormal proliferation of cells that characterize PAH. They focused on the connection between reduced apelin expression and increased fibroblast growth factor (FGF) signaling. FGF helps to form and maintain blood vessels when functioning normally, but if produced in excess, as it is in diseases such as PAH, it can cause abnormal proliferation of cells, leading to pathologic remodeling of .

In studies of rodent and human tissue samples, the scientists found that increased expression of two key components of FGF signaling, FGF2 and its receptor FGFR1, resulted from decreased levels of two microRNAs that are regulated by apelin. Decreased expression of these microRNAs disrupted the pulmonary 's ability to maintain cellular balance, resulting in abnormal induction of cellular growth in PAH. The scientists found that restoring these microRNAs in rat models of PAH led to dramatic reversal of the disease. 

"Our findings could lead to development of new therapies aimed at restoring the signaling balance in the pulmonary vessels in order to treat patients with pulmonary arterial hypertension," said senior author Dr. Hyung Chun, assistant professor of medicine (cardiology) at Yale School of Medicine. "New treatments are critical, as close to half of the patients diagnosed with die within three years despite currently available therapies."

Other authors are Jongmin Kim, Yujung Kang, Yoko Kojima, Janet Lighthouse, Xiaoyue Hu, Danielle McLean, Hyekyung Park and Daniel Greif of Yale School of Medicine; Micheala Aldred, Suzy Comhair, and Serpil Erzurum of the Lerner Institute, Cleveland Clinic Foundation.

Related Stories

A possible role for Smurf1 in pulmonary arterial hypertension

Jun 21, 2010

Pulmonary arterial hypertension (PAH) is a progressive disease, marked by shortness of breath and fatigue which can be fatal if untreated. Increased pressure in the pulmonary artery and its branches is associated with dysfunctional ...

Gene therapy may be effective in treating PAH

May 19, 2010

Gene therapy has been shown to have positive effects in rat models of pulmonary arterial hypertension (PAH), according to researchers at the University of Adelaide in Australia.

Recommended for you

New technology allows hair to reflect almost any color

23 hours ago

What if you could alter your hair to reflect any color in the spectrum? What if you could use a flatiron to press a pattern into your new hair color? Those are possibilities suggested by researchers from ...

User comments