Study finds epigenetics, not genetics, underlies homosexuality

Epigenetics – how gene expression is regulated by temporary switches, called epi-marks – appears to be a critical and overlooked factor contributing to the long-standing puzzle of why homosexuality occurs.

According to the study, published online today in The Quarterly Review of Biology, sex-specific epi-marks, which normally do not pass between generations and are thus "erased," can lead to homosexuality when they escape erasure and are transmitted from father to daughter or mother to son.

From an evolutionary standpoint, homosexuality is a trait that would not be expected to develop and persist in the face of Darwinian natural selection. Homosexuality is nevertheless common for men and women in most cultures. Previous studies have shown that homosexuality runs in families, leading most researchers to presume a genetic underpinning of sexual preference. However, no major gene for homosexuality has been found despite numerous studies searching for a genetic connection.

In the current study, researchers from the Working Group on Intragenomic Conflict at the National Institute for Mathematical and (NIMBioS) integrated evolutionary theory with recent advances in the molecular and androgen-dependent to produce a biological and that delineates the role of in homosexuality.

Epi-marks constitute an extra layer of information attached to our genes' backbones that regulates their expression. While genes hold the instructions, epi-marks direct how those instructions are carried out – when, where and how much a gene is expressed during development. Epi-marks are usually produced anew each generation, but recent evidence demonstrates that they sometimes carryover between generations and thus can contribute to similarity among relatives, resembling the effect of shared genes.

Sex-specific epi-marks produced in early fetal development protect each sex from the substantial natural variation in testosterone that occurs during later fetal development. Sex-specific epi-marks stop girl fetuses from being masculinized when they experience atypically high testosterone, and vice versa for boy fetuses. Different epi-marks protect different sex-specific traits from being masculinized or feminized – some affect the genitals, others sexual identity, and yet others affect sexual partner preference. However, when these epi-marks are transmitted across generations from fathers to daughters or mothers to sons, they may cause reversed effects, such as the feminization of some traits in sons, such as , and similarly a partial masculinization of daughters.

The study solves the evolutionary riddle of homosexuality, finding that "sexually antagonistic" epi-marks, which normally protect parents from natural variation in sex hormone levels during , sometimes carryover across generations and cause homosexuality in opposite-sex offspring. The mathematical modeling demonstrates that coding for these epi-marks can easily spread in the population because they always increase the fitness of the parent but only rarely escape erasure and reduce fitness in offspring.

"Transmission of sexually antagonistic epi-marks between is the most plausible evolutionary mechanism of the phenomenon of human homosexuality," said the study's co-author Sergey Gavrilets, NIMBioS' associate director for scientific activities and a professor at the University of Tennessee-Knoxville.

add to favorites email to friend print save as pdf

Related Stories

Serotonin plays active role in the sexual preference of mice

Mar 25, 2011

(PhysOrg.com) -- In a recent study published in Nature by Yan Liu and Yun'ai Jiang at Beijing's National Institute of Biological Sciences, the connection between serotonin and sexual preference in mice is presented. Liu a ...

Recommended for you

Changes in scores of genes contribute to autism risk

Oct 29, 2014

Small differences in as many as a thousand genes contribute to risk for autism, according to a study led by Mount Sinai researchers and the Autism Sequencing Consortium (ASC), and published today in the journal Nature.

Dozens of genes associated with autism in new research

Oct 29, 2014

Two major genetic studies of autism, led in part by UC San Francisco scientists and involving more than 50 laboratories worldwide, have newly implicated dozens of genes in the disorder. The research shows ...

Genetic link to kidney stones identified

Oct 29, 2014

A new breakthrough could help kidney stone sufferers get an exact diagnosis and specific treatment after genetic links to the condition were identified.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.