Genetic sequencing breakthrough to aid treatment for congenital hyperinsulinism

Congenital hyperinsulinism is a genetic condition where a baby's pancreas secretes too much insulin. It affects approximately one in 50,000 live births and in severe cases requires the surgical removal of all or part of the pancreas.

Researchers at the University of Exeter Medical School are the first in the world to utilise new genetic sequencing technology to sequence the entirety of a gene in order to identify mutations that cause hyperinsulinism. Previously, existing technology limited such sequencing to only part of the coding regions of the gene which meant that some mutations were missed.

Using new Illumina genetic sequencing technology, the research team led by Professor Sian Ellard has discovered novel mutations that cause hyperinsulinism. Their findings are published today, 27th December 2012, on-line by The .

The outcome will be that some infants born with hyperinsulinism will require fewer investigations, because the new technology means that for many only one genetic test will be required to determine the extent of the condition in each child. It also means that clinicians will have more information at their fingertips to inform them about how much of the pancreas needs to be removed.

Approximately 50 per cent of patients with congenital hyperinsulinism require surgery, and of those half require the entire pancreas to be removed. Removal of the entire increases the risk of diabetes later in life, but if left undiagnosed and untreated hyperinsulinism can result in irreparable brain damage. Symptoms range from shakiness and tiredness to seizure and coma.

Dr. Sarah Flanagan, Research Fellow in at the University of Exeter Medical School said: "The potential provided by this new technology is important and exciting, because it allows us to investigate genetic coding in its entirety. This means that investigators can identify mutations that sit at the heart of any number of conditions where before they might have been missed. This in turn results in better information for clinicians upon which they can base effective treatments and interventions for their patients."

Related Stories

Diabetes can be controlled in patients after pancreas removal

Aug 29, 2012

Removing the entire pancreas in patients with cancer or precancerous cysts in part of the organ does not result in unmanageable diabetes—as many physicians previously believed, research at Mayo Clinic in Florida has found. ...

Recommended for you

Refining the language for chromosomes

13 hours ago

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in ...

Down's chromosome cause genome-wide disruption

Apr 16, 2014

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

User comments