High-throughput sequencing shows potentially hundreds of gene mutations related to autism

Genomic technology has revolutionized gene discovery and disease understanding in autism, according to an article published in the December 20 issue of the journal Neuron.

The paper highlights the impact of a genomic technology called high-throughput sequencing (HTS) in discovering numerous new genes that are associated with (ASD).

"These new discoveries using HTS confirm that the of are far more complex than previously believed," said Joseph D. Buxbaum, PhD, Director of the Seaver Autism Center at the Icahn School of Medicine at Mount Sinai, and lead author of the article in Neuron.

Dr. Buxbaum is co-founder and co-director of the Autism Sequencing Consortium (ASC), a large multisite collaboration which is a model for future research. The co-authors of the article are Mark J. Daly, Broad Institute and Harvard Medical School; Bernie Devlin, University of Pittsburgh; Thomas Lehner, National Institute of Mental Health; Kathryn Roeder, Carnegie-Mellon University; Matthew W. State (co-director), Yale University, and the ASC.

HTS is a revolutionary new technology that allows scientists to obtain the sequence of all 22,000 and the entire in one experiment. This provides an unparalleled look at an individual's and allows for gene discovery and for genetic testing.

"HTS shows us that there are not just a few mutations, but potentially hundreds of mutations that are linked to autism," said Dr. Buxbaum. "By identifying the many of this disorder, we can better understand its biology, which in turn will allow us to develop more tailored treatments for individuals. It is a transformative time for genetic research in autism."

Ground-breaking, highly reproducible discoveries identified through HTS described in the article include:

  • the "staggering degree" of genetic heterogeneity in autism, which means that many individuals with autism do not share similar gene mutations;
  • the identification of an increasing number of specific genes and chromosomal intervals conferring risk;
  • the important emerging role in autism of both rare and "de novo germline mutations," or mutations developed in the sperm or ovaries of parents and passed on to children; and
  • gene loci associated with autism that overlap with gene loci associated with other illnesses, such as intellectual disability and epilepsy.
Dr. Buxbaum estimates that researchers have already identified 50 specific genes and 20-40 chromosomal loci conferring risk. The researchers predict, based on the first studies in 1,000 families, that there are many hundreds of undiscovered ASD associated genes. This surge in the number of genes related to autism revealed by HTS marks a coming of age for high-throughput sequencing, the authors believe. The path forward for , they write, is via one of two HTS processes: whole exome sequencing (WES) or whole genome sequencing (WGS) in large cohorts. The exome is the small fraction of the genome that codes for proteins.

The article spotlights the successful work of the ASC, founded in 2010, as a model to bring to fruition an explosive process. The ASC member sites, using WES technology also available at Mount Sinai, recently discovered six de novo mutations in autism patients: CHD8, DYRK1A, GRIN2B, KATNAL2, POGZ and SCN2A. These six genes may be targets for future treatments. Some of these discoveries were accomplished rapidly because the Consortium's 25 research groups, located around the world, combined their data and shared it before publication. As a result, they conducted four large studies using 1,000 families.

There are approximately 8,000 to 10,000 families currently available to the Consortium to study autism, but the article suggests many more are needed to speed up gene discoveries. Also needed for the future is increased collaboration among research teams and the integration of autism studies with studies of other psychiatric disorders. In addition, high-capacity supercomputers are needed to analyze the data. The ASC was designed to address these issues, and Mount Sinai has created Minerva, one of the largest academic supercomputers in the world, to help with these goals.

Related Stories

Mutations in 3 genes linked to autism spectrum disorders

Apr 04, 2012

Mutations in three new genes have been linked to autism, according to new studies including one with investigators at Mount Sinai School of Medicine. All three studies include lead investigators of the Autism Sequencing Consortium ...

Adding up autism risks

Oct 15, 2012

The causes of autism and autism spectrum disorder (ASD) are complex, and contain elements of both nature (genes) and the environment. New research published in BioMed Central's open access journal Molecular Autism shows ...

Recommended for you

Science of romantic relationships includes gene factor

Nov 23, 2014

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

MikeBowler
3 / 5 (2) Dec 19, 2012
i think that some aspects of Autism would actually benefit humanity such as the extremely good memory some savants have, and also the maths ability some individuals demonstrate, and lastly in my experience people with Autism are generally quite friendly and it would most definitely be helpful if people stopped fighting and were able to work things out in a better way

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.