Targeting neurotransmitter may help treat gastrointestinal conditions

December 4, 2012

Selective targeting of the neurotransmitter that differentially affects brain cells that control the two distinct functions of the pancreas may allow for new medication therapies for conditions like diabetes, dyspepsia and gastro-esophageal reflux, according to Penn State College of Medicine researchers.

"This study differs from what's been reported previously about that control the gastrointestinal tract," said R. Alberto Travagli, professor, Department of Neural and Behavioral Sciences, and lead investigator. "It provides further support to the idea that separate pathways regulate the diverse functions of organs along the upper gastrointestinal tract."

The pancreas has two functional parts: one that releases , and one that releases hormones like insulin and glucagon. The vagus nerve, which originates in the brain, regulates both of these pancreatic functions. This nerve detects chemical and that occur along the gastrointestinal tract and interprets and integrates these signals before sending appropriate responses back to the organs. In the brain, these signals tell the nerves controlling each specific organ what the proper response is—for example, digestive processes and —according to the signals detected in the GI tract.

and in organs like the pancreas control the nerve networks that receive these signals. Neurotransmitters are chemicals released from nerves that allow them to communicate with each other as well as with organs of the body. One of these neurotransmitters is glutamate, which acts on specific proteins called receptors that are present on the nerve cells. There are different classes and types of receptors that glutamate can act upon; one major class of these receptors is metabotropic glutamate receptors (mGluRs). This class is further divided into three subgroups—I, II or III—depending on their location and function on the nerve cells.

"The aim of this study was to investigate how these mGluRs are organized on nerve synapses—the specialized structures that allow a signal to pass from one cell to another cell," Travagli said. "The second aim of the study was to see whether pancreatic insulin and enzyme secretions are controlled by different types of vagal motoneurons—the cells of the nervous system that control motor functions of the pancreas through the vagus nerve."

Group II and III mGluRs are present in synapses that can either excite or inhibit the vagal that send signals to the pancreas, and different outcomes can be seen depending on which group of mGluRs glutamate acts upon. When glutamate acts upon either group II or group III mGluR, insulin secretion is decreased. Pancreatic enzyme secretion is increased only by activation of group II mGluR by glutamate.

"The data shows mGluRs on brainstem vagal nerve circuits that regulate pancreatic functions are organized in a very specific manner," Travagli said. "This type of separation in their organization may allow for development of selective drugs that target very specific vagal neurocircuits in patients with such conditions as gastrointestinal reflux disorders, functional dyspepsia, gastroparesis and pancreatic exocrine or endocrine dysfunctions."

Explore further: New research reveals brain's protection mechanism during stroke

More information: Researchers published results in a recent issue of The Journal of Physiology.

Related Stories

Nerve growth factors elevated in pancreatic cancer model

June 19, 2012

Severe pain is a major symptom of pancreatic cancer. The results of a new study show that four different factors involved in the growth and maintenance of nerves are elevated in a mouse model of pancreatic cancer. This is ...

Newly discovered scaffold supports turning pain off

July 27, 2012

(Medical Xpress) -- Johns Hopkins scientists have discovered a "scaffolding" protein that holds together multiple elements in a complex system responsible for regulating pain, mental illnesses and other complex neurological ...

Recommended for you

High-fat diet starves the brain

April 29, 2016

A high-fat diet of three days in mice leads to a reduction in the amount of glucose that reaches the brain. This finding was reported by a Research Group led by Jens Brüning, Director at the Max Planck Institute for Metabolism ...

A vitamin that stops the aging process of organs

April 28, 2016

Nicotinamide riboside (NR) is pretty amazing. It has already been shown in several studies to be effective in boosting metabolism. And now a team of researchers at EPFL's Laboratory of Integrated Systems Physiology (LISP), ...

Lifestyle has a strong impact on intestinal bacteria

April 28, 2016

Everything you eat or drink affects your intestinal bacteria, and is likely to have an impact on your health. That is the finding of a large-scale study led by RUG/UMCG geneticist Cisca Wijmenga into the effect of food and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.