Researchers identify quadruplex structure in C9ORF72

(Medical Xpress)—A Motor Neurone Disease (MND) Association funded research project at UCL has given new insights into the structure and function of an MND gene called C9ORF72. The work is published in the journal Scientific Reports.

Dr Pietro Fratta (UCL Institute of Neurology) is first author of the paper which successfully identifies the structure of the six-letter genetic mistake in C9ORF72.

Since the pivotal discovery in 2011 that genetic mistakes in C9ORF72 can cause up to 40 percent of cases of MND with a positive family history of the disease, researchers have been trying to unravel its role in the body, to determine how it could cause MND.

Understanding how C9ORF72 works, what it looks like and how mistakes in the gene may cause MND, could assist researchers in the future to identify potential treatments that target the disease.

Co-author Dr Adrian Isaacs (UCL Institute of Neurology) explains, "Nothing is currently known about how the mistake in C9ORF72 kills motor neurones. The mistake in C9ORF72 is similar to mistakes that cause some other neurological diseases. In these diseases the mistake leads to the formation of toxic aggregates of – RNA is a copy of DNA that is made when a gene is switched on and is important for the generation of proteins.

"This is the first report in the MND field to work out the structure of the abnormal C9ORF72 RNA and therefore gives insight into how the mistake might be causing MND."

The UCL research group identified that a repetitive code in the C9ORF72 gene naturally forms a square tube-like structure when in its RNA copy form. This is called an 'RNA G-quadruplex'.

It is hoped that identifying this square, tube-like structure will give further clues about the C9ORF72 gene's specific role in the body. To date, quadruplexes have been identified as having a number of roles, including editing copies of genes to create .

Dr Fratta explains how this structure could cause MND: "One possibility is that the RNA G-quadruplexes accumulate in motor neurones and then different proteins within the cell somehow bind to this structure and get stuck. As a result the motor neurones malfunction and perhaps even ultimately die.

"We have now determined the that this RNA forms. This will be important for understanding the effect of the C9ORF72 mistake in motor neurones and assist our approaches to trying to correct its effects."

MND Association's Director of Research Development Dr Dickie commented: "The UCL scientists have opened up an exciting new avenue of research. At the moment we know very little about whether, or how, these RNA structures may be linked to MND, but evidence from other diseases indicates that they are biologically active and therefore likely to be important to the function and health of nerve cells."

Following this finding, the next steps for researchers will be to determine the function of the G-quadruplex in nerve cells,and to identify drugs that can bind to the G-quadruplexes.

More information: Fratta P. et al. C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Scientific Reports.

add to favorites email to friend print save as pdf

Related Stories

Study gives clues to causes of motor neurone disease

Oct 10, 2012

(Medical Xpress)—Scientists at the University of Bath are one step further to understanding the role of one of the proteins that causes the neurodegenerative disorder, Amyotrophic Lateral Sclerosis (ALS), ...

Study identifies motor neurone disease biomarker

Nov 04, 2010

A study funded by the Motor Neurone Disease (MND) Association, in collaboration with the Medical Research Council (MRC), has identified a common signature of nerve damage in the brains of MND patients.

Recommended for you

3-D printing offers innovative method to deliver medication

5 hours ago

3-D printing could become a powerful tool in customizing interventional radiology treatments to individual patient needs, with clinicians having the ability to construct devices to a specific size and shape. That's according ...

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.