New understanding can lead to srategies for dealing with neurodegenerative diseases

December 6, 2012
This is Dr. Daniel Kaganovich of the Hebrew University of Jerusalem. Credit: The Hebrew University of Jerusalem

A new understanding of what takes place on the cellular level during the development of neurodegenerative diseases, such as Parkinson's, Alzheimer's, ALS and Huntington's diseases, offers promise towards possible new strategies for combating such diseases, say Hebrew University of Jerusalem researchers.

result from an impairment of motor function or cognitive function or both. This impairment results from degeneration in the particular area of the brain responsible for those functions.

Although these have been functionally linked to aggregation (deposits), there is much that is unknown about the mechanism through which aggregation causes toxicity and death at the cellular level. Inclusion bodies – structures comprised of pathogenic —have long been seen as a hallmark of disease, but the relationship between inclusions and disease has remained somewhat mysterious.

In a study published in PNAS (). Hebrew University researchers (working in the lab of Dr. Daniel Kaganovich in the Cell and Developmental Biology Department, together with collaborators) present evidence that suggests that these inclusion bodies, which have traditionally been thought to accompany disease onset, actually have a cell- that is not necessarily related to the disease conditions.

Further, the researchers suggest that some of those inclusion bodies not only are not toxic, but actually are part of a natural protective process. The researchers have identified two inclusion bodies, which they call JUNQ and IPOD. Aggregation in the JUNQ can lead to toxicity, whereas aggregation in the IPOD is protective.

These findings, say the Hebrew University researchers, point up a new potential strategy for designing therapeutics for neurodegenerative disease. Instead of preventing proteins from aggregating, which can be very difficult, it may be possible to enhance the cellular ability to actively enclose harmful aggregates within protective inclusions, thereby neutralizing the toxic proteins that bring on further neurodegenerative damage and even death.

Explore further: Study identifies novel Parkinson's disease drug target

Related Stories

Study identifies novel Parkinson's disease drug target

June 21, 2007

Researchers at the MassGeneral Institute for Neurodegenerative Disease (MGH-MIND) have identified a potential new drug target for the treatment of Parkinson’s disease and possibly for other degenerative neurological disorders.

Neurodegeneration 'clumping proteins' common in aging process

August 10, 2010

Many proteins that form insoluble clumps in the brains of people with Alzheimer's and other neurodegenerative diseases are also found in healthy individuals and clump together as a normal part of aging. According to a surprising ...

Study finds two gene classes linked to new prion formation

May 26, 2011

Unlocking the mechanisms that cause neurodegenerative prion diseases may require a genetic key, suggest new findings reported by University of Illinois at Chicago distinguished professor of biological sciences Susan Liebman.

Cellular stress can induce yeast to promote prion formation

July 23, 2011

It's a chicken and egg question. Where do the infectious protein particles called prions come from? Essentially clumps of misfolded proteins, prions cause neurodegenerative disorders, such as mad cow/Creutzfeld-Jakob disease, ...

New findings on protein misfolding

September 18, 2012

Misfolded proteins can cause various neurodegenerative diseases such as spinocerebellar ataxias (SCAs) or Huntington's disease, which are characterized by a progressive loss of neurons in the brain. Researchers of the Max ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.