Study of brain activity in monkeys shows how the brain processes mistakes made by others

Activity of individual neurons in the medial frontal cortex of monkeys was recorded while they observed their partner making errors. Credit: 2012 Masaki Isoda, RIKEN Brain Science Institute

Humans and other animals learn by making mistakes. They can also learn from observing the mistakes of others. The brain processes self-generated errors in a region called the medial frontal cortex (MFC) but little is known about how it processes the observed errors of others. A Japanese research team led by Masaki Isoda and Atsushi Iriki of the RIKEN Brain Science Institute has now demonstrated that the MFC is also involved in processing observed errors.

The team studied the brains of while the animals performed the same task. Two monkeys sat opposite each other and took turns to choose between a yellow and green button, one of which resulted in a liquid reward for both. Each monkey's turn consisted of .

After blocks of between 5 and 17 choices, the button that resulted in reward was switched unpredictably, usually causing an error on the next choice. The choices made by each monkey immediately after such errors, or errors that were random, showed that they used both their own errors and their partner's to guide their subsequent choices. While the monkeys performed this task, the researchers recorded activity of single neurons in their brains.

In this way they were able to determine which behavioural aspect was most closely associated with each neuron's activity, explains Isoda. "We found that many neurons in the medial frontal cortex were not activated when the monkey made an error itself, but they became active when their partner made an error." This shows that it is the MFC which processes observations of another's error, and the corresponding behavior shows that observing and processing such errors guides subsequent actions.

"Such error identification and subsequent are of crucial importance for developing and maintaining successful social communities," says Isoda. "Humans are tuned into other people's mistakes not only for competitive success, but also for cooperative group living. If non- become available in humans, then we should be able to identify medial frontal neurons that behave similarly."

Having identified the MFC as being involved, Isoda now wants to delve deeper into the process. "The next steps will be to clarify whether the inactivation of medial frontal cortex reduces the ability to identify others' errors, and to determine whether other brain regions are also involved in the processing of others' errors."

More information: Yoshida, K., Saito, N., Iriki, A. & Isoda, M. Social error monitoring in macaque frontal cortex. Nature Neuroscience 15, 1307–1312 (2012). www.nature.com/neuro/journal/v… n9/full/nn.3180.html

add to favorites email to friend print save as pdf

Related Stories

Distinguishing yourself from others

Apr 22, 2011

(Medical Xpress) -- Researchers in Japan have identified the specific nerve cells responsible for the ability to distinguish between the actions of self and others. The discovery lays the foundations for studying ...

Brain splits to handle two jobs at once

Apr 16, 2010

(PhysOrg.com) -- New research has shown that the brain handles two tasks at once by dedicating half the brain to one task, and the other half to the second. This means it may not be able to effectively handle ...

Recommended for you

Common infections tied to some stroke risk in kids

4 hours ago

A new study suggests that colds and other minor infections may temporarily increase stroke risk in children. The study found that the risk of stroke was increased only within a three-day period between a ...

Celebrities in 'Ice Bucket Challenge' to fight disease

15 hours ago

Steven Spielberg, Justin Bieber and Bill Gates are among many celebrities pouring buckets of ice water over their heads and donating to fight Lou Gehrig's disease, in a fundraising effort that has gone viral.

Study helps explain why elderly have trouble sleeping

16 hours ago

As people grow older, they often have difficulty falling asleep and staying asleep, and tend to awaken too early in the morning. In individuals with Alzheimer's disease, this common and troubling symptom ...

Targeted brain training may help you multitask better

18 hours ago

The area of the brain involved in multitasking and ways to train it have been identified by a research team at the IUGM Institut universitaire de gériatrie de Montréal and the University of Montreal.

User comments