Study sheds light on how our brains move limbs

January 16, 2013

(Medical Xpress)—A Queen's University study is giving new insight into how the neurons in our brains control our limbs. The research might one day help with the design of more functional artificial limbs.

"We've taken a step closer to understanding how our arms and legs work and how we move our bodies," says neuroscience researcher Tim Lillicrap, who worked with neuroscience professor Stephen Scott on the study.

The researchers used a novel network model, coupled with a computer biophysics model of a limb, to explain some of the prominent patterns of neural activity seen in the brain during movements.

The findings refine previous notions of how neurons in the primary motor cortex fire and drive muscles. The is the region of the brain that sends the largest number of connections to the spinal cord.

When moving an arm or a leg, are sent along to control the movement of limbs. Different movements require different patterns of nerve impulses—the relationship between these neural patterns and the resulting movements is poorly understood.

The study demonstrates that the patterns of activity are related to specific details of the limb physics—for example, the patterns of are tuned (or optimized) for muscle architecture and limb geometry.

Dr. Lillicrap, who did the study as part of his Phd thesis at Queen's and is now a post-doctoral fellow at Oxford University in England, says better understanding of how the brain controls limbs will help develop in the future.

The study has been published in the latest issue of the journal Neuron.

Explore further: Eye movement not engaged in arms race, researchers find

Related Stories

Eye movement not engaged in arms race, researchers find

February 28, 2012

We make our eye movements earlier or later in order to coordinate with movements of our arms, New York University neuroscientists have found. Their study, which appears in the journal Neuron, points to a mechanism in the ...

Recommended for you

Memory replay prioritizes high-reward memories

February 12, 2016

Why do we remember some events, places and things, but not others? Our brains prioritize rewarding memories over others, and reinforce them by replaying them when we are at rest, according to new research from the University ...

Watching sensory information translate into behavior

February 12, 2016

It remains one of the most fundamental questions in neuroscience: How does the flood of sensory information—everything an animal touches, tastes, smells, sees, and hears—translate into behavior?

Origins of 'rage' identified in brain in male animal model

February 11, 2016

Violent, unprovoked outbursts in male mice have been linked to changes in a brain structure tied to the control of anxiety and fear, according to a report by researchers from NYU Langone Medical Center to be published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.