Project to capture and interrogate single cancer cells wins innovator award

January 11, 2013

From a single cell gone bad, cancer evolves into an increasingly complex tumor built of a variety of normal cells and diverse malignant cells, some of which escape to create dangerous colonies in other organs, further jumbling the treatment picture.

Nicholas Navin, Ph.D., an assistant professor in The University of Texas MD Anderson Center Department of Genetics, believes the key to sorting out this cellular chaos is by identifying important mutations in single at various stages of the cancer's development.

Successfully analyzing differences in active mutations among cells would help researchers understand, map and eventually block the lethal path to metastasis – spread of the primary cancer to other organs.

"The genetic diversity of cells inhibits our understanding of metastasis. Single-cell sequencing will allow us to detail the genetic heterogeneity and trace the cell's lineage as mutations allow the cell to escape the primary tumor site, form a circulating cell and then seeds metastasis," Navin said. "Using genetic markers, we can reconstruct this evolutionary process."

The Damon Runyon Cancer Research Foundation wants Navin to test his idea, naming him the Nadia's Gift Foundation Innovator, one of its 2013 Damon Runyon-Rachleff Innovation Awards, providing $150,000 a year for three years.

Potential to predict metastasis, treatment response

Navin is one of seven early career scientists chosen for innovation awards because their projects have the potential to significantly improve prevention, diagnosis and . The foundation announcement notes the innovation awards are for "cancer research by exceptionally creative thinkers with "high-risk/high-reward" ideas who lack sufficient preliminary data to obtain traditional funding."

The foundation noted that Navin's method "will have myriad clinical applications, which have prognostic value in predicting invasion, metastasis, survival and response to chemotherapy."

Navin is grateful to the foundation for support of the project, which he agrees is high-risk, high-reward because it aims to break new ground in the genomic analysis of cancer.

First, he must develop tools to reliably isolate individual cancer cells and identify mutations in all of the genes that encode proteins. Then he will apply single-cell gene sequencing to triple-negative breast cancer, the most lethal form of the disease.

Develop tools, apply them to triple-negative breast cancer

"Most of the tools we have now operate on bulk tumor tissue samples, which include normal supportive cells, or stroma, and immune system cells as well as cancer cells, which have different genetic mutations," Navin said. "So when we analyze tissue in bulk, we find the average genetic signal of the tumor. What you miss are the rare cells that may be most malignant."

Identifying these cells is particularly important for those with triple-negative breast cancer, which does not have the three protein targets that make other breast cancers much more treatable.

"Triple-negative breast cancer is the most aggressive type, with lowest survival rates, the most intratumor genetic heterogeneity, and it metastasizes the most," Navin said. "So there's really a dire need to help these patients by developing new therapies to inhibit metastasis."

To sequence the full coding regions of each single cell, Navin's lab will isolate single cells that have naturally doubled their chromosome content. The cell will be dissolved and the DNA will be expanded from picogram (trillionth of a gram) to nanogram (billionth) quantities using whole-genome amplification. This will provide sufficient material to generate libraries for 'next-generation' sequencing on the Illumina platform.

From this data, the full set of coding mutations can be detected in each cancer cell and compared to trace the lineage of their evolution during metastasis.

The project also will examine fundamental issues in cancer metastasis. "In cancer biology there's a big question about whether cells metastasize early in the growth of the primary tumor or if that occurs after the tumor has grown to a large size," Navin said. "Another model proposes that tumor can travel back and forth between primary and metastatic tumor sites. We're interested in looking at and understanding those models in triple- negative ."

Explore further: New study shows promise for developing new treatments for breast cancer

Related Stories

New signaling pathway linked to breast cancer metastasis

April 2, 2012

Lymph nodes help to fight off infections by producing immune cells and filtering foreign materials from the body, such as bacteria or cancer cells. Thus, one of the first places that cancer cells are found when they leave ...

Recommended for you

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.