Common genetic alteration found in head and neck cancers may not be key to effective treatment

Although a large majority of head and neck cancers have a deregulation of the PI3K/AKT/mTOR pathway, data recently published in Cancer Research, a journal of the American Association for Cancer Research, indicated that deregulation of this pathway does not necessarily signify that the tumor is dependent on it for survival and progression.

Cancer, particularly of the head and neck, is highly heterogeneous, with a large number of rendering it resistant to specific targeted treatments. Because cancer is linked to , genomic and proteomic biomarkers are currently being used to design targeted therapeutic intervention for a variety of cancer indications.

Research has shown the /AKT/mTOR pathway is deregulated in a large majority of solid tumors. Treatment with mTOR inhibitors results in robust activity in certain cancer cell lines, but they are not effective in all patients. Researchers are currently using biomarkers to try to stratify patients for response to mTOR inhibitors.

"However, these technologies have limited success due to their inherent limitations in lack of clarity in distinguishing driver mutations in pathways from those of passengers," said Pradip K. Majumder, Ph.D., of the division of at Mitra Biotech, Bangalore, India.

Majumder and colleagues used a approach called tumor explant model to distinguish driver mutations, or those that are critical for a tumor's survival, from passenger mutations. This distinction is important for stratifying patients for current treatments and for developing novel rational combinations of .

The researchers collected fresh tumor tissue from 22 patients with head and neck cancers and conducted ex-vivo explant experiments. They were able to identify responders to rapamycin, an mTOR inhibitor. However, a majority of the tumor samples did not have an antitumor effect after treatment with the mTOR inhibitor, possibly because rapamycin is known to activate the AKT pathway.

To combat the AKT pathway activation, Majumder and colleagues treated the tumor samples with rapamycin in combination with an AKT inhibitor. Rapamycin-induced AKT activation was reversed, but a subset of patients still failed to respond.

"While few tumors are dependent on only mTOR, others are dependent on both mTOR and AKT," Majumder said. "However, a majority of the mTOR pathway-activated tumors seemed to not be dependent on this axis for survival or maintenance."

Targeted phosphoproteomic characterization of tumors resistant to dual AKT/mTOR inhibitors showed that multiple pathways were supporting the tumors' proliferation and survival and likely responsible for treatment resistance. This approach of combining ex vivo functional analyses with molecular profiling could potentially be used to stratify patients for appropriate combination therapy, according to Majumder.

"A majority of anticancer drugs fail in the phase II efficacy stage of clinical development due to a lack of technologies to identify and appropriately stratify patients according to their tumor pathway dependence," Majumder said. "Using this approach, researchers may be able to develop a translational tool for further clinical development of novel anticancer drugs."

add to favorites email to friend print save as pdf

Related Stories

Hedgehog pathway key in tamoxifen-resistant breast CA

Nov 06, 2012

(HealthDay)—Noncanonical Hedgehog (Hh) signaling is activated in tamoxifen-resistant tumors, and the phosphoinositide 3-kinase inhibitor/protein kinase B (PI3K/AKT) pathway plays a key role protecting Hh ...

Recommended for you

International charge on new radiation treatment for cancer

4 minutes ago

(Medical Xpress)—Imagine a targeted radiation therapy for cancer that could pinpoint and blast away tumors more effectively than traditional methods, with fewer side effects and less damage to surrounding tissues and organs.

Computer model reveals cancer's energy source

1 hour ago

(Medical Xpress)—A computer model study reveals – for the first time – details of an energy-creating process vital and unique to cancer cells. The research holds promise for new interventions and for ...

Britain to map 100,000 DNA code sequences

4 hours ago

British scientists are to map 100,000 complete DNA code sequences in a project that will make the country a world leader in genetic research on cancer and rare diseases, the prime minister said on Friday.

User comments