Dopamine-receptor gene variant linked to human longevity

January 3, 2013

(Medical Xpress)—A variant of a gene associated with active personality traits in humans seems to also be involved with living a longer life, UC Irvine and other researchers have found.

This derivative of a dopamine-receptor gene – called the DRD4 7R allele – appears in significantly higher rates in people more than 90 years old and is linked to lifespan increases in mouse studies.

Robert Moyzis, professor of at UC Irvine, and Dr. Nora Volkow, a psychiatrist who conducts research at the Brookhaven National Laboratory and also directs the National Institute on Drug Abuse, led a research effort that included data from the UC Irvine-led 90+ Study in Laguna Woods, Calif. Results appear online in The .

The variant gene is part of the , which facilitates the transmission of signals among neurons and plays a major role in the brain network responsible for attention and reward-driven learning. The DRD4 7R allele blunts dopamine signaling, which enhances individuals' reactivity to their environment.

People who carry this variant gene, Moyzis said, seem to be more motivated to pursue social, intellectual and physical activities. The variant is also linked to attention-deficit/hyperactivity disorder and addictive and .

"While the genetic variant may not directly influence longevity," Moyzis said, "it is associated with that have been shown to be important for living a longer, healthier life. It's been well documented that the more you're involved with social and physical activities, the more likely you'll live longer. It could be as simple as that."

Numerous studies – including a number from the 90+ Study – have confirmed that being active is important for successful aging, and it may deter the advancement of , such as Alzheimer's.

Prior molecular evolutionary research led by Moyzis and Chuansheng Chen, UC Irvine professor of psychology & social behavior, indicated that this "longevity allele" was selected for during the nomadic out-of-Africa human exodus more than 30,000 years ago.

In the new study, the UC Irvine team analyzed genetic samples from 310 participants in the 90+ Study. This "oldest-old" population had a 66 percent increase in individuals carrying the variant relative to a control group of 2,902 people between the ages of 7 and 45. The presence of the variant also was strongly correlated with higher levels of physical activity.

Next, Volkow, neuroscientist Panayotis Thanos and their colleagues at the Brookhaven National Laboratory found that mice without the variant had a 7 percent to 9.7 percent decrease in lifespan compared with those possessing the gene, even when raised in an enriched environment.

While it's evident that the variant can contribute to longevity, Moyzis said further studies must take place to identify any immediate clinical benefits from the research. "However, it is clear that individuals with this gene variant are already more likely to be responding to the well-known medical adage to get more physical activity," he added.

Related Stories

Scientists show how gene variant linked to ADHD could operate

August 16, 2011

A study using mice provides insight into how a specific receptor subtype in the brain could play a role in increasing a person's risk for attention-deficit hyperactivity disorder (ADHD). The research, conducted by the Intramural ...

Gene impedes recovery from alcoholism

November 15, 2011

People who are alcohol-dependent and who also carry a particular variant of a gene run an increased risk of premature death. This is a recent finding from the interdisciplinary research at the Department of Psychology and ...

Recommended for you

Take a trip through the brain (w/ Video)

July 30, 2015

A new imaging tool developed by Boston scientists could do for the brain what the telescope did for space exploration. In the first demonstration of how the technology works, published July 30 in the journal Cell, the researchers ...

Surprising similarity in fly and mouse motion vision

July 29, 2015

At first glance, the eyes of mammals and those of insects do not seem to have much in common. However, a comparison of the neural circuits for detecting motion shows surprising parallels between flies and mice. Scientists ...

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.