Study of how eye cells become damaged could help prevent blindness

January 22, 2013
This image shows a breaking rod series. Credit: Haeri et al.

Light-sensing cells in the eye rely on their outer segment to convert light into neural signals that allow us to see. But because of its unique cylindrical shape, the outer segment is prone to breakage, which can cause blindness in humans. A study published on January 22nd in the Biophysical Journal provides new insight into the mechanical properties that cause the outer segment to snap under pressure. The new experimental and theoretical findings help to explain the origin of severe eye diseases and could lead to new ways of preventing blindness.

"To our knowledge, this is the first theory that explains how the structural rigidity of the outer segment can make it prone to damage," says senior study author Aphrodite Ahmadi of the State University of New York Cortland. "Our theory represents a significant advance in our understanding of retinal degenerative diseases."

The outer segment of consists of discs packed with a light-sensitive protein called rhodopsin. Discs made at nighttime are different from those produced during the day, generating a banding pattern that was first observed in frogs but is common across species. Mutations that affect photoreceptors often destabilize the outer segment and may damage its discs, leading to cell death, retinal degeneration, and blindness in humans. But until now, it was unclear which structural properties of the outer segment determine its susceptibility to damage.

The video will load shortly
This video explains how mutant opsin aggregates in rod photoreceptor outer segments. Credit: Haeri et al.

To address this question, Ahmadi and her team examined tadpole photoreceptors under the microscope while subjecting them to fluid forces. They found that high-density bands packed with a high concentration of rhodopsin were very rigid, which made them more susceptible to breakage than low-density bands consisting of less rhodopsin. Their model confirmed their experimental results and revealed factors that determine the critical force needed to break the outer segment.

The video will load shortly
This video explains how vision is affected by a bending rod. Credit: Haeri et al.

The findings support the idea that mutations causing rhodopsin to aggregate can destabilize the outer segment, eventually causing blindness. "Further refinement of the model could lead to novel ways to stabilize the outer segment and could delay the onset of blindness," says Ahmadi.

Explore further: 'Lucky 13' as new gene discovery offers further hope for childhood blindness

More information: Haeri et al., Modeling the Flexural Rigidity of Rod Photoreceptors, Biophysical Journal (2013), dx.doi.org/10.1016/j.bpj.2012.11.3835

Related Stories

Cats' eye diseases genetically linked to diseases in humans

March 4, 2009

About one in 3,500 people are affected with retinitis pigmentosa (RP), a disease of the retina's visual cells that eventually leads to blindness. Now, a University of Missouri researcher has identified a genetic link between ...

Architecture of rod sensory cilium disrupted by mutation

November 21, 2012

Using a new technique called cryo-electron tomography, two research teams at Baylor College of Medicine have created a three-dimensional map that gives a better understanding of how the architecture of the rod sensory cilium ...

Crag keeps the light 'fantastic' for photoreceptors

December 4, 2012

The ability of the eye of a fruit fly (Drosophila melanogaster) to respond to light depends on a delicate ballet that keeps the supply of light sensors called rhodopsin constant as photoreceptors turn on and off in response ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.