fMRI study uncovers neural mechanism underlying drug cravings

Addiction may result from abnormal brain circuitry in the frontal cortex, the part of the brain that controls decision-making. Researchers from the RIKEN Center for Molecular Imaging Science in Japan collaborating with colleagues from the Montreal Neurological Institute of McGill University in Canada report today that the lateral and orbital regions of the frontal cortex interact during the response to a drug-related cue and that aberrant interaction between the two frontal regions may underlie addiction. Their results are published today in the journal Proceedings of the National Academy of Sciences.

Cues such as the sight of drugs can induce cravings and lead to drug-seeking behaviors and drug use. But cravings are also influenced by other factors, such as drug availability and self-control. To investigate the involved in cue-induced cravings the researchers studied the brain activity of a group of 10 smokers, following exposure to cigarette cues under two different conditions of cigarette availability. In one experiment cigarettes were available immediately and in the other they were not. The researchers combined a technique called transcranial magnetic stimulation (TMS) with (fMRI).

The results demonstrate that in smokers the (OFC) tracks the level of craving while the (DPFC) is responsible for integrating drug cues and drug availability. Moreover, the DPFC has the ability to suppress activity in the OFC when the cigarette is unavailable. When the DPFC was inactivated using TMS, both craving and craving-related signals in the OFC became independent of drug availability.

The authors of the study conclude that the DLPFC incorporates drug cues and knowledge on drug availability to modulate the value signals it transmits to the OFC, where this information is transformed into drug-seeking action.

"We demonstrate that in smokers, cravings build up in the OFC upon processing of cigarette cues and availability by the DFPC. What is surprising is that this is a neural circuit involved in decision making and self-control, that normally guides individuals to optimal behaviors in daily life." Explains Dr. Hayashi, from RIKEN, who designed and conducted the fMRI and TMS experiments.

"This research uncovers the responsible for self-control during reward-seeking choices. It is also consistent with the view that drug addiction is a pathology of decision making." According to Dr. Alain Dagher, a neurologist at the Montreal Neurological Institute.

These findings will help understand the neural basis of addiction and may contribute to a therapeutic approach for addiction.

More information: Takuya Hayashi, Ji Hyun Ko, Antonio P. Strafella, Alain Dagher; "Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving." PNAS, January 2013, DOI:10.1073/pnas.1212185110

Related Stories

Influencing craving for cigarettes by stimulating the brain

Oct 31, 2011

Targeted brain stimulation increases cigarette cravings, a new study in Biological Psychiatry has found, which may ultimately lead to new treatments that reverse these effects. Cues associated with cigarette smoking, such a ...

Study identifies neural activity linked to food addiction

Apr 04, 2011

Persons with an addictive-like eating behavior appear to have greater neural activity in certain regions of the brain similar to substance dependence, including elevated activation in reward circuitry in response to food ...

Hunger hormone: Makes food more attractive

May 06, 2008

A new brain-imaging study by researchers at the Montreal Neurological Institute, McGill University reveals that ghrelin - a stomach hormone, acts on specific regions of the brain to enhance our response to food related cues ...

Recommended for you

Conceptual representation in the brain: Towards mind-reading

3 hours ago

Your measured brain signals can reveal whether you are thinking about an animal or a tool. That's what neuroscientist Irina Simanova discovered during her PhD at Radboud University, where she investigated the conceptual representation ...

Researchers track down cause of eye mobility disorder

19 hours ago

Imagine you cannot move your eyes up, and you cannot lift your upper eyelid. You walk through life with your head tilted upward so that your eyes look straight when they are rolled down in the eye socket. ...

How kids' brain structures grow as memory develops

20 hours ago

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

User comments