Gene therapy reprograms scar tissue in damaged hearts into healthy heart muscle

A cocktail of three specific genes can reprogram cells in the scars caused by heart attacks into functioning muscle cells, and the addition of a gene that stimulates the growth of blood vessels enhances that effect, said researchers from Weill Cornell Medical College, Baylor College of Medicine and Stony Brook University Medical Center in a report that appears online in the Journal of the American Heart Association.

"The idea of reprogramming in the heart into functioning was exciting," said Dr. Todd K. Rosengart, chair of the Michael E. DeBakey Department of Surgery at BCM and the report's corresponding author. "The theory is that if you have a big heart attack, your doctor can just inject these three genes into the scar tissue during surgery and change it back into heart muscle. However, in these animal studies, we found that even the effect is enhanced when combined with the VEGF gene."

"This experiment is a proof of principle," said Dr. Ronald G. Crystal, chairman and professor of at Weill Cornell Medical College and a pioneer in gene therapy, who played an important role in the research. "Now we need to go further to understand the activity of these genes and determine if they are effective in even larger hearts."

During a heart attack, blood supply is cut off to the heart, resulting in the death of heart muscle. The damage leaves behind a scar and a much weakened heart. Eventually, most people who have had serious heart attacks will develop .

Changing the scar into heart muscle would strengthen the heart. To accomplish this, during surgery, Rosengart and his colleagues transferred three forms of the vascular endothelial growth factor (VEGF) gene that enhances or an inactive material (both attached to a gene vector) into the hearts of rats. Three weeks later, the rats received either Gata4, Mef 2c and Tbx5 (the cocktail of transcription factor genes called GMT) or an inactive material. (A transcription factor binds to specific DNA sequences and starts the process that translates the genetic information into a protein.)

The GMT genes alone reduced the amount of scar tissue by half compared to animals that did not receive the genes, and there were more heart in the animals that were treated with GMT. The hearts of animals that received GMT alone also worked better as defined by than those who had not received genes. (Ejection fraction refers to the percentage of blood that is pumped out of a filled ventricle or pumping chamber of the heart.)

The hearts of the animals that had received both the GMT and the VEGF gene transfers had an ejection fraction four times greater than that of the animals that had received only the GMT transfer.

Rosengart emphasizes that more work needs to be completed to show that the effect of the VEGF is real, but it has real promise as part of a new treatment for that would minimize heart damage.

"We have shown both that GMT can effect change that enhances the activity of the heart and that the VEGF gene is effective in improving heart function even more," said Dr. Crystal.

The idea started with the notion of induced pluripotent stem cells – reprograming mature specialized cells into stem cells that are immature and can differentiate into different specific cells needed in the body. Dr. Shinya Yamanaka and Sir John B. Gurdon received the Nobel Prize in Medicine and Physiology for their work toward this goal this year.

However, use of induced pluripotent stem cells has the potential to cause tumors. To get around that, researchers in Dallas and San Francisco used the GMT cocktail to reprogram the scar cells into cardiomyocytes (cells that become heart muscle) in the living animals.

Now Rosengart and his colleagues have gone a step farther – encouraging the production of new blood vessels to provide circulation to the new .

Related Stories

Nanofibers may help treat heart attacks

Aug 10, 2012

(Medical Xpress) -- Cardiovascular diseases kill over 17 million people a year globally, according to the World Health Organization, and many more suffer heart attacks but recover. Even those who do recover are more prone ...

Heart derived stem cells develop into heart muscle

Apr 23, 2008

Dutch researchers at University Medical Center Utrecht and the Hubrecht Institute have succeeded in growing large numbers of stem cells from adult human hearts into new heart muscle cells. A breakthrough in stem cell research. ...

Recommended for you

Study: Removing clot helps limit stroke disability

Dec 17, 2014

For the first time in several decades, a new treatment has been shown to limit the damage from a common type of stroke. Researchers in the Netherlands found that mechanically removing a clot in addition to using a clot-busting ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.