Immune system foiled by a hairpin

The innate immune system detects invasive pathogens and activates defense mechanisms to eliminate them. Pathogens, however, employ a variety of tricks to block this process. A new study shows how the measles virus thwarts the system, by means of a simple hairpin-like structure.

The is the body's first line of defense against invasive pathogens and . Essentially the system consists of an array of receptors that recognize particular molecular conformations which are characteristic of and viruses. Among the classes of molecules bound by these receptors are viral nucleic acids, which are bound specifically by so-called RIG-I-like receptors in the cytoplasm of infected cells. One of these is MDA5, which polymerizes into filaments on long double-stranded RNAs that indicate the presence of RNA viruses. RIG-I itself binds to shorter terminal segments of viral RNAs.

However, viruses have come up with a plethora of ways to avoid triggering immune defense measures. "The virus that causes measles, for instance, produces a so-called V protein, which binds specifically to MDA5 and one other RIG-I-like receptor, and thus impairs recognition of virus-infected cells by the , although it does not inhibit RIG-I itself," says Professor Karl-Peter Hopfner of LMU's Gene Center. Indeed this kind of competition between viral and largely determines the distribution and - above all - the virulence of .

A hairpin opens up the receptor

"We have been able to crystallize the complex formed by the V protein and MDA5 for the first time, and have determined its three-dimensional structure in detail," Hopfner reports. This structure also permitted Hopfner's team, in collaboration with LMU Professor Karl-Klaus Conzelmann, to clarify the mode of action of the V protein. The analysis revealed that it inserts a hairpin loop into the core secondary structure of MDA5, unfolding the protein and allowing V to bind to a segment that is normally buried in the interior of the molecule. This in turn prevents MDA5 from forming filaments and signaling the presence of viral RNA.

This finding was completely unexpected, and explains why MDA5, but not RIG-I, is inhibited by the V protein: This internal sequence is different in RIG-I and this is the reason why RIG-I is not targeted by the viral product. "Our work provides a detailed insight into the mechanisms viral proteins use to inhibit host protein function. It may also open opportunities for new therapeutic interventions," Hopfner concludes.

More information: Science, 17 January 2013. www.sciencemag.org/content/early/2013/01/16/science.1230949.abstract

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Fresh hope for preventing pneumonia in the elderly

19 hours ago

There are calls for the frail and elderly not be be overlooked for vaccines against pneumonia this winter, with UNSW research challenging conventional wisdom on immunisation effectiveness in older patients.

Rural microbes could boost city dwellers' health

Apr 23, 2014

The greater prevalence of asthma, allergies and other chronic inflammatory disorders among people of lower socioeconomic status might be due in part to their reduced exposure to the microbes that thrive in rural environments, ...

User comments