Monitoring of immune function in critically ill kids with influenza reveals severe immune suppression in non-survivors

(Medical Xpress)—Investigators from 15 children's medical centers, including Nationwide Children's Hospital, observed and evaluated critically ill children with influenza to evaluate the relationships between levels of systemic inflammation, immune function and likelihood to die from the illness. The study appears in the January issue of Critical Care Medicine.

The is the cellular arm of the immune system that serves as a first-responder to new threats, and is thought to drive the inflammatory response in many forms of critical illness. Recent evidence indicates that suppression of innate can occur in critically ill patients.

This immune suppression can be quantified in the laboratory through measurement of the capacity of the patient's blood to produce a specific cytokine, (TNF)-α , when stimulated with (LPS), a substance which should induce a robust TNF α response. Patients with innate immune suppression produce reduced amounts of TNFα when their blood is stimulated. In its most severe form, this condition is known as immunoparalysis. Severe reductions in TNFα production capacity have been associated with the development of secondary bacterial infections and death in critically ill adults and children.

is not routinely measured in patients with influenza, though some therapies used in this population, such as corticosteroids, can be potently immunosuppressive.

"Both pro- and anti-inflammatory therapies have been proposed as additional treatment options for ," explains lead study author Mark Hall, MD, Critical Care specialist and principal investigator in the Center for Clinical and Translational Research at Nationwide Children's Hospital. "However, a lack of immune monitoring data in the pediatric population has made therapeutic decision-making difficult in children."

In this first-of-its-kind, multicenter observational study, blood samples from critically ill children with influenza were tested using highly standardized techniques to determine the capacity of the participants' innate immune system to produce TNFα when stimulated with LPS. Healthy control subjects also had their blood tested for the same properties.

Results indicated that despite high levels of circulating pro-inflammatory cytokines, critically ill children with influenza demonstrated lower TNFα production capacity compared with healthy control subjects. Further, children who died from influenza had markedly lower TNFα production capacity compared with survivors. Patients who were co-infected with influenza and the bacteria Staphylococcus aureus showed the greatest degree of immune suppression.

While the reduced capacity to produce TNFα among the critically ill children compared to healthy subjects was expected, the degree of reduction in capacity was severe enough to be highly predictive of death from the illness.

"The study demonstrates a strong relationship between mortality and reduced innate immune responsiveness in critically ill patients," said Dr. Hall, also a faculty member at The Ohio State University College of Medicine. "It also demonstrates the feasibility of large-scale immune monitoring of the kind necessary to develop and test therapies for these critically ill children. The identification of potential treatment thresholds is important because strong evidence suggests that innate immune suppression associated with critical illness may be reversible."

Advocating for additional studies, investigators suggest that patient-specific immune monitoring could aid in determining the most effective treatment for these critically ill patients. Therapies that stimulate the immune system may have a significant role in the treatment of high-risk children with severe associated with influenza infection.

Related Stories

Infants with severe RSV disease may be immunosuppressed

date Dec 10, 2012

Infants with severe lower respiratory tract infection caused by respiratory syncytial virus (RSV) may have a dysfunctional innate immune response that relates to the severity of their disease. These are the findings from ...

Recommended for you

How to avoid July Fourth allergy flare-ups

date Jul 03, 2015

Fireworks, picnics and parades are favorite Fourth of July traditions for many people, but for those with allergies or asthma these activities could be uncomfortable or even dangerous.

Researchers discover the cause of coeliac disease

date Jun 30, 2015

Professor Ludvig M. Sollid and his colleagues at the University of Oslo have found the cause of coeliac disease. To do so required really going into depth, right down to molecular level. 

Mechanism of T cell self / non-self “education”

date Jun 30, 2015

Researchers at the University of Tokyo have demonstrated that a protease only found in the thymus produces special peptides that promote positive selection of T cells that can detect non-self antigens, a ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.