Induction of adult cortical neurogenesis by an antidepressant

January 4, 2013

The production of new neurons in the adult normal cortex in response to the antidepressant, fluoxetine, is reported in a study published online this week in Neuropsychopharmacology.

The research team, which is based at the Institute for Comprehensive Medical Science, Fujita Health University, Aichi, has previously demonstrated that exist at the surface of the adult cortex, and, moreover, that ischemia enhances the generation of new from these neural progenitor cells. These cells were accordingly named "Layer 1 Inhibitory Neuron Progenitor cells" (L1-INP). However, until now it was not known whether L1-INP-related neurogenesis could be induced in the normal adult cortex.

Tsuyoshi Miyakawa, Koji Ohira, and their colleagues employed fluoxetine, a , and one of the most widely used antidepressants, to stimulate the production of new neurons from L1-INP cells. A large percentage of these newly generated neurons were inhibitory GABAergic interneurons, and their generation coincided with a reduction in apoptotic cell death following ischemia. This finding highlights the potential neuroprotective response induced by this antidepressant drug. It also lends further support to the postulation that induction of adult neurogenesis in cortex is a relevant prevention/treatment option for and psychiatric disorders.

Explore further: Confirmation of repeated patterns of neurons indicates stereotypical organization throughout brain's cerebral cortex

Related Stories

Disinhibition plus instruction improve brain plasticity

April 12, 2011

(PhysOrg.com) -- The healthy brain has balance of excitatory and inhibitory signals that stimulate activity but also keep it under control. Some brain diseases, like autism and Down's syndrome, have too much inhibition, which ...

Recommended for you

Autism-linked protein crucial for feeling pain

December 1, 2016

Sensory problems are common to autism spectrum disorders. Some individuals with autism may injure themselves repetitively—for example, pulling their hair or banging their heads—because they're less sensitive to pain than ...

Study provides neuronal mechanism for the benefits of fasting

December 1, 2016

A study from the Buck Institute offers for the first time an explanation for the benefits of fasting at the neuronal level, providing a possible mechanism for how fasting can afford health benefits. Publishing on December ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.