Study offers new insights into the mechanics of muscle fatigue

A study in The Journal of General Physiology examines the consequences of muscle activity with surprising results, indicating that the extracellular accumulation of potassium that occurs in working muscles is considerably higher than previously thought.

Muscle excitation involves the influx of and efflux of . Although the fraction of ions that cross the muscle membrane with each contraction is minute, repeated activity can lead to substantial changes in the intracellular and extracellular concentrations of sodium and potassium ions. The extent of these changes, however, has been unclear. Now, Torben Clausen from Aarhus University in Denmark provides quantitative analyses of the changes in intracellular and extracellular ion concentration resulting from stimulation of a leg muscle in rats, providing insight into how they vary with muscle activity.

Clausen measured the changes in concentration of sodium, potassium, and in working rat extensor digitorum longus (ESL) muscles. Remarkably, when their muscles were stimulated to fire at a rate of 5 Hz (comparable to that in the legs of a person riding a bicycle) for five minutes, sufficient intracellular potassium was lost to lead to an extracellular concentration that would interfere with further excitation. These results suggest that accumulation of extracellular potassium is a much larger contributor to than previously thought, which may be of particular importance in such conditions as hyperkalemic and other channelopathies that affect skeletal muscle. These changes in ion distribution are opposed through the action of the "Na+/K+ pump"—which expends energy to move sodium out of the cell and potassium into it—and will therefore be even more pronounced under disease- and injury-related conditions associated with decreased pump activity.

More information: Clausen, T., et al. 2013. J. Gen. Physiol. doi:10.1085/jgp.201210892

add to favorites email to friend print save as pdf

Related Stories

Study finds new pathway critical to heart arrhythmia

Oct 26, 2011

University of Maryland School of Medicine researchers have uncovered a previously unknown molecular pathway that is critical to understanding cardiac arrhythmia and other heart muscle problems. Understanding the basic science ...

Recommended for you

Radical vaccine design effective against herpes viruses

52 minutes ago

Herpes simplex virus infections are an enormous global health problem and there is currently no viable vaccine. For nearly three decades, immunologists' efforts to develop a herpes vaccine have centered on ...

Popular antioxidant likely ineffective, study finds

9 hours ago

The popular dietary supplement ubiquinone, also known as Coenzyme Q10, is widely believed to function as an antioxidant, protecting cells against damage from free radicals. But a new study by scientists at McGill University ...

New findings on 'key players' in brain inflammation

10 hours ago

Inflammation is the immune system's natural reaction to an 'aggressor' in the body or an injury, but if the inflammatory response is too strong it becomes harmful. For example, inflammation in the brain occurs ...

Gut microbial mix relates to stages of blood sugar control

Mar 05, 2015

The composition of intestinal bacteria and other micro-organisms—called the gut microbiota—changes over time in unhealthy ways in black men who are prediabetic, a new study finds. The results will be presented Friday ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.