Study offers new insights into the mechanics of muscle fatigue

January 17, 2013

A study in The Journal of General Physiology examines the consequences of muscle activity with surprising results, indicating that the extracellular accumulation of potassium that occurs in working muscles is considerably higher than previously thought.

Muscle excitation involves the influx of and efflux of . Although the fraction of ions that cross the muscle membrane with each contraction is minute, repeated activity can lead to substantial changes in the intracellular and extracellular concentrations of sodium and potassium ions. The extent of these changes, however, has been unclear. Now, Torben Clausen from Aarhus University in Denmark provides quantitative analyses of the changes in intracellular and extracellular ion concentration resulting from stimulation of a leg muscle in rats, providing insight into how they vary with muscle activity.

Clausen measured the changes in concentration of sodium, potassium, and in working rat extensor digitorum longus (ESL) muscles. Remarkably, when their muscles were stimulated to fire at a rate of 5 Hz (comparable to that in the legs of a person riding a bicycle) for five minutes, sufficient intracellular potassium was lost to lead to an extracellular concentration that would interfere with further excitation. These results suggest that accumulation of extracellular potassium is a much larger contributor to than previously thought, which may be of particular importance in such conditions as hyperkalemic and other channelopathies that affect skeletal muscle. These changes in ion distribution are opposed through the action of the "Na+/K+ pump"—which expends energy to move sodium out of the cell and potassium into it—and will therefore be even more pronounced under disease- and injury-related conditions associated with decreased pump activity.

Explore further: Neuroscientists' discovery could bring relief to epilepsy sufferers

More information: Clausen, T., et al. 2013. J. Gen. Physiol. doi:10.1085/jgp.201210892

Related Stories

Study finds new pathway critical to heart arrhythmia

October 26, 2011

University of Maryland School of Medicine researchers have uncovered a previously unknown molecular pathway that is critical to understanding cardiac arrhythmia and other heart muscle problems. Understanding the basic science ...

Recommended for you

High-fat diet starves the brain

April 29, 2016

A high-fat diet of three days in mice leads to a reduction in the amount of glucose that reaches the brain. This finding was reported by a Research Group led by Jens Brüning, Director at the Max Planck Institute for Metabolism ...

A vitamin that stops the aging process of organs

April 28, 2016

Nicotinamide riboside (NR) is pretty amazing. It has already been shown in several studies to be effective in boosting metabolism. And now a team of researchers at EPFL's Laboratory of Integrated Systems Physiology (LISP), ...

Lifestyle has a strong impact on intestinal bacteria

April 28, 2016

Everything you eat or drink affects your intestinal bacteria, and is likely to have an impact on your health. That is the finding of a large-scale study led by RUG/UMCG geneticist Cisca Wijmenga into the effect of food and ...

Tiny microscopes reveal hidden role of nervous system cells

April 28, 2016

A microscope about the size of a penny is giving scientists a new window into the everyday activity of cells within the spinal cord. The innovative technology revealed that astrocytes—cells in the nervous system that do ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.