Landmark study in blood stem cell transplant

(Medical Xpress)—Before all the excitement about embryonic stem cells, doctors were using hematopoetic – that is, blood-forming—stem cells. Hematopoetic stem cells can replenish all the types of cells in the blood, and are the centerpiece of transplantation as treatment for diseases such as multiple myeloma or leukemia. They can come from two different places: directly from the marrow of a donor's hip bone, or indirectly from the donor's blood after a drug nudges the stem cells out of the bone marrow.

Most hematopoetic in the United States now use the indirect method of obtaining the stem cells. Until this fall, gold-standard randomized clinical trial results were not available to say which method is best for patient outcomes. Winship Cancer Institute Ned Waller was a key co-author of a study that was published in October in the addressing this question.

This video is not supported by your browser at this time.

The trial involved 48 centers enrolling 551 patients as part of the Bone Marrow and Clinical Trials Network (BMT CTN). Waller helped design the study, and his lab at Winship analyzed the cells in each type of graft as the central core lab for the trial.

The study found no significant difference in the overall survival rate at two years, and no difference in or in acute (GVHD). However, there was a significantly higher rate of chronic GVHD with the use of blood stem cells.

GVHD, a difficult and sometimes life-threatening complication for this type of transplant, involves damage inflicted by the transplant recipient's new immune system upon the liver, skin and digestive system.

This finding will generate serious discussion among leaders in the transplant field about whether bone marrow or peripheral blood is a better treatment option, Waller says. A text Q + A with him follows.

What was surprising about the results of this study?

The equivalent survival was expected, and the increased chronic GvHD in recipients of blood stem cell grafts was suspected. What is surprising is that the relapse rate was similar between the two arms, in spite of the PBSC arm having more chronic GvHD.

The accompanying editorial argues bone marrow should be the standard for unrelated-donor transplants. Do you agree?

Yes, with the exceptions that Fred mentioned: patients with life-threatening infections and patients at high risk for graft rejection.

What are the differences, procedurally, between bone marrow and peripheral blood as sources for hematopoetic stem cell transplant?

Donating bone marrow involves a two or three hour surgical procedure requiring general anesthesia, in which bone marrow is removed from the with a needle and syringe. For peripheral blood stem cells, the donor undergoes five days of injections of granulocyte colony-stimulating factor and then a four-hour apheresis procedure to harvest from the blood. Blood stem cell donors have bone pain during the 5-day period of cytokine treatment, and bone marrow donors have more discomfort early after donation, but symptoms for both BM and PBSC donors have typically resolved by four weeks after donation.

What proportion of each is now in use here?

Marrow is the graft source in about 25% of recipients of grafts from unrelated donors, 10% in recipients of grafts from related donors.

What proportion of HSCT is unrelated donor?

For allogeneic transplants, about 60% receive grafts form unrelated donors (33% matched related donors and 7% mis-matched related donors).

What kind of information does this study provide oncologists/hematologists about which option to use in which situation?

Marrow should be preferred in recipients of grafts from unrelated donors when the conditioning regimen is myeloablative [substantially damages the patient's existing ].

Does it depend on the type of leukemia/myeloma, the age or other conditions of the patient etc?

This study only enrolled patients with acute leukemia and MDS [myelodysplastic syndrome]. It excluded patients with myeloma or lymphoma. Ages included children, adults up to 60.

What other types of studies in this area are being conducted at Winship?

We are studying the role of different constituents in the graft (BM and PBSC) to determine which are most important in shaping transplant outcomes (relapse, GvHD). We have an active pre-clinical research program utilizing mouse models to address specific questions related to engraftment cell homing and specific pathways related to immune activation. In addition, we will participate in a clinical trial of a new way of mobilizing blood stems that avoids the need for five days of G-CSF and uses a CXCR4 antagonist called plerixafor to mobilize PBSC. The properties of the plerixafor-mobilized PBSC may be more similar to BM cells with respect to GvHD.

More information: www.nejm.org/doi/full/10.1056/NEJMoa1203517

Related Stories

Groundbreaking study that may change transplant practices

Nov 20, 2012

Researchers from John Theurer Cancer Center at Hackensack University Medical Center, one of the nation's 50 best cancer centers, played an important role in a study published in the New England Journal of Medicine on Oct ...

Recommended for you

Growing a blood vessel in a week

13 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

16 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments