Pathogenic bacteria adhering to the human vascular wall triggers vascular damage during meningococcal sepsis

January 24, 2013

Researchers at the Paris Cardiovascular Research Center (PARCC) have shown how adhesion of Neisseria (N.) meningitidis to human microvessels in a humanized mouse model leads to the characteristic cutaneous lesions of meningococcal sepsis. This work, published on January 24 in the Open Access journal PLOS Pathogens, is an important demonstration of the direct role of adhesion, specifically Type IV pili mediated adhesion, plays in the development of the disease.

Meningococcal sepsis is a rapidly developing and often fatal infection. Cutaneous lesions, often presenting clinically as purpuric or petechial skin rashes, are a hallmark feature of the infection hence the term purpura fulminans to describe this severe form of sepsis. Understanding the mechanisms behind the development of these lesions is important to understand disease progression because it reveals the underlying mechanisms of the . From the experimental point of view the strict human specificity of N. has long been a limiting factor in the development of relevant in vivo models of this infection and for understanding how the bacteria interact with the blood vessels. It was previously thought that that the large number of circulating bacteria was responsible for the through the release of LPS in particular.

In this research, investigators utilized a humanized mouse model, where human skin, containing an abundance of human microvessels, was grafted onto immunocompromised mice. Grafted mice thus had a hybrid , part mouse, and part human. In this context, N. meningitidis associated exclusively, and in significant numbers, with the human vessels. Once associated with the human vessels the bacteria rapidly led to an endothelial inflammatory response with expression of the human pro- IL-6 and IL-8 and the infiltration of . Vascular events such as clotting, thrombosis, congestion and vascular leak were all observed in the infected human vessels, mimicking the clinical pathology. The combination of these factors led to the development of a purpuric rash in 30% of the infections. The association of the bacteria with the human vessels was shown to be dependent on the adhesive properties of the bacterial Type IV pili, filamentous structures found at the surface of many pathogenic bacteria. Importantly, bacterial mutants deficient for these adhesive structures do not lead to any distinctive pathology despite normal numbers of circulating bacteria.

This work thus leads to a change in the paradigm in our understanding of the disease mechanism, with local adhesion events now considered central to the disease process. Because it recapitulates key features of human infection, the described experimental model opens new avenues of research to further understand the mechanisms of disease and to design new prevention and treatment strategies.

Explore further: 'Blueprint' for blocking MMP may unlock new treatments for deadly blood infection

More information: Melican K, Michea Veloso P, Martin T, Bruneval P, Duménil G (2013) Adhesion of Neisseria meningitidis to Dermal Vessels Leads to Local Vascular Damage and Purpura in a Humanized Mouse Model. PLoS Pathog 9(1): e1003139. doi:10.1371/journal.ppat.1003139

Related Stories

Modeling sepsis in newborns

September 6, 2012

Sepsis, or bacterial infection of the bloodstream, is a grave, hard-to-diagnose threat in premature newborns in the NICU. Even when it's detected and treated with antibiotics, its inflammatory effects can harm fragile babies' ...

Recommended for you

Zika in fetal brain tissue responds to a popular antibiotic

November 30, 2016

Working in the lab, UC San Francisco researchers have identified fetal brain tissue cells that are targeted by the Zika virus and determined that azithromycin, a common antibiotic regarded as safe for use during pregnancy, ...

Zika and glaucoma linked for first time in new study

November 30, 2016

A team of researchers in Brazil and at the Yale School of Public Health has published the first report demonstrating that the Zika virus can cause glaucoma in infants who were exposed to the virus during gestation.

Flu forecasts successful on neighborhood level

November 30, 2016

Scientists at Columbia University's Mailman School of Public Health developed a computer model to predict the onset, duration, and magnitude of influenza outbreaks for New York City boroughs and neighborhoods. They found ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.