Stem cells found to heal damaged artery in lab study

January 10, 2013

Scientists at the Texas Biomedical Research Institute have for the first time demonstrated that baboon embryonic stem cells can be programmed to completely restore a severely damaged artery. These early results show promise for eventually developing stem cell therapies to restore human tissues or organs damaged by age or disease.

"We first cultured the stem cells in under special conditions to make them differentiate into cells that are the precursors of , and we saw that we could get them to form tubular and branching structures, similar to blood vessels," said John L. VandeBerg, Ph.D., Texas Biomed's chief scientific officer.

This finding gave VandeBerg and his team the confidence to do complex experiments to find out if these cells could actually heal a damaged artery. Human were first isolated and grown in 1998.

The results are presented in a manuscript, co-authored by Texas Biomed's Qiang Shi, Ph.D., and Gerald Shatten, Ph.D., of the University of Pittsburgh, published in the January 10, 2013 issue of the Journal of Cellular and .

The scientists found that cells derived from embryonic stem cells could actually repair experimentally damaged baboon and "are promising for repairing damaged of people," according to the authors.

Researchers completely removed the cells that line the inside surface from a segment of artery, and then put cells that had been derived from embryonic stem cells inside the artery. They then connected both ends of the arterial segment to plastic tubing inside a device called a which is designed to grow cells and tissues. The scientists then pumped fluid through the artery under pressure as if blood were flowing through it. The outside of the artery was bathed in another fluid to sustain the cells located there.

Three days later, the complex structure of the was beginning to regenerate, and by 14 days, the inside of the artery had been perfectly restored to its complex natural state. It went from a non-functional tube to a complex fully functional artery.

"Just think of what this kind of treatment would mean to a patient who had just suffered a heart attack as a consequence of a damaged coronary artery. And this is the real potential of stem cell regenerative medicine—that is, a treatment with stem cells that regenerates a damaged or destroyed tissue or organ," VandeBerg said.

To show that the artery couldn't heal itself in the absence of stem cells, the researchers took a control arterial segment that also was stripped of the cells on its interior surface, but did not seed it with stem cells. No healing occurred.

Stains for proteins that indicate functional characteristics showed that the healed artery had completely normal function and could do everything that a normal artery does in a healthy individual.

"This is evidence that we can harness stem cells to treat the gravest of arterial injuries," said VandeBerg.

Eventually, scientists hope to be able to take a skin cell or a white blood cell or a cell from any other tissue in the body, and induce it to become just like an embryonic stem cell in its capacity to differentiate into any tissue or organ.

"The vision of the future is, for example, for a patient with a pancreas damaged because of diabetes, doctors could take skin cells, induce them to become stem cells, and then grow a new pancreas that is just like the one before disease developed," VandeBerg said.

Explore further: US researchers identify first human lung stem cell

Related Stories

US researchers identify first human lung stem cell

May 11, 2011

For the first time, researchers at Brigham and Women's Hospital (BWH) have identified a human lung stem cell that is self-renewing and capable of forming and integrating multiple biological structures of the lung including ...

New way to weed out problem stem cells, making therapy safer

September 27, 2012

Mayo Clinic researchers have found a way to detect and eliminate potentially troublemaking stem cells to make stem cell therapy safer. Induced Pluripotent Stem cells, also known as iPS cells, are bioengineered from adult ...

Recommended for you

Researchers grow retinal nerve cells in the lab

November 30, 2015

Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain. ...

Shining light on microbial growth and death inside our guts

November 30, 2015

For the first time, scientists can accurately measure population growth rates of the microbes that live inside mammalian gastrointestinal tracts, according to a new method reported in Nature Communications by a team at the ...

Functional human liver cells grown in the lab

November 26, 2015

In new research appearing in the prestigious journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.