New technique comprehensively generates three-dimensional maps of gene expression in the brain

January 11, 2013
Transcriptome tomography. Tissue sections in each of three orthogonal planes are fractionated, and 36,558 gene expression densities in them are measured with microarrays and then reconstructed to generate 3D maps (an example map is shown). Credit: 2012 Yuko Okamura-Oho, RIKEN Advanced Science Institute

A research team led by Yuko Okamura-Oho and Hideo Yokota of the RIKEN Advanced Science Institute, Wako, has developed a novel technique for three-dimensional (3D) mapping of gene expression patterns onto brain structures. The technique, known as transcriptome tomography, combines tissue sectioning with microarray technology and produces comprehensive maps of the density and location of gene expression, which have a higher resolution than the maps produced by existing methods.

To produce their first dataset, the researchers sliced six mouse brains into five micrometer sections, in each of three anatomical planes. They collected the sections in batches of 200 to produce 'fractions' of 1-millimeter thickness that were used for microarray analysis. They then treated 61 such fractions with more than 36,000 RNA probes and reconstructed the data to produce of gene expression throughout the whole mouse brain.

Transcriptome tomography is semi-automated, making it more cost-effective and faster than existing manual approaches—it took the researchers just one month to generate the first dataset. The technique can also be used to map the tissue distribution of any type of , such as proteins, lipids, sugars and microRNAs.

Okamura-Oho and her colleagues validated the technique by comparing their first dataset to pre-existing ones generated by other methods. They also analyzed the expression patterns of the , which when mutated causes Huntington's disease, a progressive neurodegenerative condition characterized by the death of neurons in the basal ganglia, followed by cell death in the .

The analysis revealed that Huntingtin was expressed at high levels in brain regions known to be severely affected by the condition, such as the basal ganglia, but at significantly lower levels in areas that are less vulnerable, such as the midbrain and cerebellum. "We could make expression maps in 20-times higher resolution comparable to MRI. Such maps have the potential to reveal more detailed disease-related abnormalities with continuous technical advancing," says Okamura-Oho.

Transcriptome tomography datasets can be uploaded to Waxholm Space, a co-ordinate-based space for open resources. The space facilitates the creation of researchers' own datasets that can then be shared and analyzed in the space.

Explore further: Fine-scale analysis of the human brain yields insight into its distinctive composition

More information: Okamura-Oho, Y., Shimokawa, K., Takemoto, S., Hirakiyama, A., Nakamura, S., Tsujimura, Y., Nishimura, M., Kasukawa, T., Masumoto, K., Nikaido, I. et al. Transcriptome tomography for brain analysis in the web-accessible anatomical space. PLoS ONE 7, e45373 (2012).

Related Stories

Recommended for you

New class of RNA tumor suppressors identified

November 23, 2015

A pair of RNA molecules originally thought to be no more than cellular housekeepers are deleted in over a quarter of common human cancers, according to researchers at the Stanford University School of Medicine. Breast cancer ...

Batten disease may benefit from gene therapy

November 11, 2015

In a study of dogs, scientists showed that a new way to deliver replacement genes may be effective at slowing the development of childhood Batten disease, a rare and fatal neurological disorder. The key may be to inject viruses ...

Molecular clocks control mutation rate in human cells

November 9, 2015

Every cell in the human body contains a copy of the human genome. Through the course of a lifetime all cells are thought to acquire mutations in their genomes. Some of the mutational processes generating these mutations do ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.