A treatment for ALS? Neural stem cell transplants slow progression of disease

January 3, 2013
A treatment for ALS?  Neural stem cell transplants slow progression of disease
Stem cells. Credit: iStock

(Medical Xpress)—Results from a meta-analysis of 11 independent amyotrophic lateral sclerosis research studies are giving hope to the ALS community by showing, for the first time, that the fatal disease may be treatable.

Researchers say progress in treating ALS, also known as Lou Gehrig's disease, may be made by targeting new mechanisms revealed by neural stem cell-based studies.

"This significant research will help us better understand the mechanisms underlying motor neuron diseases," said Yang (Ted) Teng, HMS associate professor of surgery at Brigham and Women's Hospital and one of the study's co-lead authors. Teng is also director of the Injury and Research Laboratory in the Department of Neurosurgery at Brigham and Women's.

The research studies were conducted at Brigham and Women's, Boston Children's Hospital, Sanford-Burnham Medical Research Institute, UMass Medical School, Johns Hopkins University, SUNY-Syracuse, Columbia University and the VA Boston Healthcare System.

ALS causes nerve cells in the spinal cord to die, eventually taking away a person's ability to move or even breathe. A decade of research conducted at multiple institutions shows, however, that when were transplanted into multilevels of the spinal cord of a mouse model with familial ALS, disease onset and progression slowed, motor and improved and treated mice survived three to four times longer than untreated mice.

A summary of the findings from all 11 studies was published online in December in Science Translational Medicine.

The transplanted neural stem cells help by producing factors that preserve the health and function of the host's remaining nerve cells. They also reduce inflammation and suppress the number of disease causing cells in the host's spinal cord.

"This work sheds new light on detrimental roles played by non- in triggering motor , and these events should be targeted for developing more effective therapeutics to treat ALS," Teng said.

The transplanted neural stem cells benefited the mice with ALS by boosting the health and function of their remaining nerve cells. The neural stem cells also reduced inflammation and suppressed the number of disease-causing cells in their spinal cords. The neural stem cells did not replace deteriorating nerve cells. Researchers observed improved motor performance and respiratory function in the treated mice. The neural stem cell transplant also slowed the disease's progression. Twenty-five percent of the treated ALS mice in the study survived for one year or more—roughly three to four times longer than untreated mice.

"This is not a cure for ALS," said Teng, who is one of the principal investigators of Project ALS' consortium project. "But it shows the potential that mechanisms used by neural stem cells in our study have for improving an ALS patient's quality of life and length of life."

Neural stem cells are the precursors of all brain cells. They can self-renew, making more neural stem cells, and differentiate, becoming nerve cells or other brain cells. The cells can also rescue malfunctioning nerve cells and help preserve and regenerate host brain tissue.

The transplanted neural stem cells helped the ALS mice, but not for the obvious reason that they replaced nerve cells missing in the ALS spinal cord. The biggest impact actually came from a series of other beneficial neural stem cell activities. It turns out neural stem cells produce protective molecules. They also trigger host cells to produce their own protective molecules. In turn, these factors help spare host nerve cells from further destruction.

A number of other positive events then take place in treated mice. The transplanted normal neural stem cells change the fate of the host's own diseased neural stem cells for the better. This change decreases the number of toxin producing, disease promoting cells in the host's spinal cord. Transplanted neural stem cells also reduce inflammation.

Researchers discovered that cell replacement played a surprisingly small role in the impressive clinical benefits. Rather, the stem changed the host environment for the better and protected the endangered .

Explore further: Transplanted neural stem cells treat ALS in mouse model

More information: stm.sciencemag.org/content/4/165/165ra164

Related Stories

Transplanted neural stem cells treat ALS in mouse model

December 19, 2012

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is untreatable and fatal. Nerve cells in the spinal cord die, eventually taking away a person's ability to move or even breathe. A consortium of ALS ...

Recommended for you

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Neurons encoding hand shapes identified in human brain

November 23, 2015

Neural prosthetic devices, which include small electrode arrays implanted in the brain, can allow paralyzed patients to control the movement of a robotic limb, whether that limb is attached to the individual or not. In May ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.