Study uncovers details of early stages in muscle formation and regeneration

NIH study uncovers details of early stages in muscle formation and regeneration
To form muscle fibers, masses of cells merge to form long tubes with many cell nuclei (above). Recent research reveals two distinct stages in this process. First, proteins on the outside of the cells (shown as spikes in A) promote the fusion of the cell membranes. The blue squares in B and C represent proteins inside the cells that facilitate the development of a pore between them, so their contents can merge. This process of cell fusion is a basic part of the biology of muscle cell fusion and of several other types of cells as well.

(Medical Xpress)—Researchers at the National Institutes of Health have identified proteins that allow muscle cells in mice to form from the fusion of the early stage cells that give rise to the muscle cells.

The findings have implications for understanding how to repair and rehabilitate muscle tissue and to understanding other processes involving cell fusion, such as when a sperm fertilizes an egg, when viruses infect cells, or when specialized cells called osteoclasts dissolve and assimilate in order to repair and maintain bones.

Their findings were published online in the .

"Through a process that starts with these , the body forms tissue that accounts for about one-third of its total weight," said the study's senior author, Leonid V. Chernomordik, Ph.D., of the Section on Membrane Biology at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the NIH institute where the research was conducted. "Our study provides the first look at the very early stages of this fusion process."

originate from known as myoblasts. Myoblasts fuse to form a single long tubular cell called a myocyte (a muscle fiber). is composed of large collections of these fibers. The fusion of myoblasts into takes place early in . With exercise and throughout a person's life, the process is repeated to form new muscle mass and repair old or damaged muscle.

It takes many hours for cells to prepare for fusion, but the fusion process itself is very rapid. To study myoblast fusion, the researchers first blocked the start of the fusion process with a chemical. Ordinarily, the mouse myoblasts the researchers worked with fuse at varied intervals. By blocking fusion, and then lifting the block, the researchers were able to synchronize fusion in a large number of cells, making the process easier to study.

The researchers identified the two distinct stages of cell fusion and the essential proteins that facilitate these stages.

In the first stage, two myoblasts meet, and proteins on cell surface membranes cause the membranes to meld. In the second stage, a pore opens between the cells and their contents merge. This second step is guided by proteins inside the cells.

The work identifies two cell surface proteins that act at the start of myoblast fusion. These proteins belong to a large family of proteins called annexins. Annexins are also known to play a role in membrane repair and in inflammation.

The researchers identified the protein dynamin, found inside the cell, as essential to the second stage of the cell fusion process.

"Dynamin also has an unexplained link to certain rare and poorly understood myopathies—disorders characterized by underdeveloped muscles," said Dr. Chernomordik. "We hope that further examination of the role of dynamin in will lead to a greater understanding of these conditions."

More information: jcb.rupress.org/content/200/1/3.full

Related Stories

Muscle cells point the finger at each other

Nov 22, 2010

A new study reveals that muscle cells fuse together during development by poking "fingers" into each other to help break down the membranes separating them. The study appears online on November 22, 2010 in the Journal of ...

Macho muscle cells force their way to fusion

Feb 16, 2011

In fact, according to new research from Johns Hopkins, the fusion of muscle cells is a power struggle that involves a smaller mobile antagonist that points at, pokes and finally pushes into its larger, stationary partner ...

Membrane fusion a mystery no more

Jan 24, 2012

The many factors that contribute to how cells communicate and function at the most basic level are still not fully understood, but researchers at Baylor College of Medicine have uncovered a mechanism that helps explain how ...

Researchers Find 'Fusion' Protein

Apr 11, 2007

Working with fruit flies, scientists at Johns Hopkins have discovered a protein required for two neighboring cells to fuse and become one "super cell."

Recommended for you

Stroke damage mechanism identified

3 hours ago

Researchers have discovered a mechanism linked to the brain damage often suffered by stroke victims—and are now searching for drugs to block it.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.