New target for treating wide spectrum of cancers

(Medical Xpress)—UC Irvine biologists, chemists and computer scientists have identified an elusive pocket on the surface of the p53 protein that can be targeted by cancer-fighting drugs. The finding heralds a new treatment approach, as mutant forms of this protein are implicated in nearly 40 percent of diagnosed cases of cancer, which kills more than half a million Americans each year.

In a study published online this week in Nature Communications, the UC Irvine researchers describe how they employed a computational method to capture the various shapes of the . In its regular form, p53 helps repair damaged DNA in cells or triggers cell death if the damage is too great; it has been called the "guardian of the genome."

Mutant p53, however, does not function properly, allowing the it normally would target to slip through and proliferate. For this reason, the protein is a key target of research on .

Within cells, p53 proteins undulate constantly, much like a seaweed bed in the ocean, making binding sites for potential difficult to locate. But through a called molecular dynamics, the UC Irvine team created a computer simulation of these physical movements and identified an elusive binding pocket that's open only 5 percent of the time.

After using a computer to screen a library of 2,298 small molecules, the researchers selected the 45 most promising to undergo biological assays. Among these 45 compounds, they found one, called stictic acid, that fits into the protein pocket and triggers tumor-suppressing abilities in mutant p53s.

While stictic acid cannot be developed into a viable drug, noted study co-leader Peter Kaiser, professor of , the work suggests that a comprehensive screening of small molecules with similar traits may uncover a usable compound that binds to this specific p53 pocket.

"The discovery and pharmaceutical development of such a compound could have a profound impact on cancer treatments," Kaiser said. "Instead of focusing on a specific form of the disease, oncologists could treat a wide spectrum of cancers, including those of the lung and breast." He added that there is currently one group of experimental drugs—called Nutlins—that stop p53 degradation, but they don't target protein mutations as would a drug binding to the newly discovered pocket.

The results are the culmination of years of labor by researchers with UC Irvine's Institute for Genomics & Bioinformatics and the Chao Family Comprehensive Cancer Center.

"It's been a large and complex multidisciplinary effort," said Richard Lathrop, professor of computer science and co-leader of the study. "We're working on the leading edge of what's possible, and a variety of skills and expertise is required to make progress. Hopefully, our research eventually will lead to drugs that target many different forms of cancer."

Hartmut Luecke, UC Irvine professor of molecular biology & biochemistry and physiology & biophysics, and Rommie Amaro, an assistant professor of computer science and pharmaceutical sciences who is now at UC San Diego, were other study co-leaders.

Related Stories

Drug kills cancer cells by restoring faulty tumor suppressor

May 14, 2012

A new study describes a compound that selectively kills cancer cells by restoring the structure and function of one of the most commonly mutated proteins in human cancer, the "tumor suppressor" p53. The research, published ...

New drug shrinks cancer in animals, study shows

Apr 06, 2011

A study led by researchers at the University of Michigan Comprehensive Cancer Center showed in animal studies that new cancer drug compounds they developed shrank tumors, with few side effects.

Cancer is a p53 protein aggregation disease

Mar 29, 2011

Protein aggregation, generally associated with Alzheimer's and mad cow disease, turns out to play a significant role in cancer. In a paper published in Nature Chemical Biology, Frederic Rousseau and Joost Schymkowitz of VIB ...

Cancer biology: Keeping bad company

Jan 16, 2013

The p53 tumor suppressor protein manages DNA repair mechanisms in response to genetic damage and kills off precancerous cells before they multiply. The loss of p53 due to mutation greatly increases risk of ...

Recommended for you

Cancer patients need anxiety, depression screening

11 hours ago

(HealthDay)—It is important to recognize and treat anxiety or depression among cancer patients, according to a clinical guideline published online April 14 in the Journal of Clinical Oncology.

Pre-HPV vaccine, most oropharyngeal cancers HPV+

12 hours ago

(HealthDay)—Most oropharyngeal cancers in the United States diagnosed between 1995 and 2005 were positive for human papillomavirus (HPV), specifically HPV 16 or 18, according to a study published in the May issue of the ...

'Dustman' protein helps bin cancer cells

Apr 21, 2014

Cancer researchers have discovered a new 'dustman' role for a molecule that helps a drug kill cancer cells according to a study, published in the journal Proceedings of the National Academy of Sciences (PNAS) ...

User comments