Wild animals may contribute to the resurgence of African sleeping sickness

Wild animals may be a key contributor to the continuing spread of African sleeping sickness, new research published in PLOS Computational Biology shows. The West African form of the disease, also known as Gambiense Human African trypanosomiasis, affects around 10,000 people in Africa every year and is deadly if left untreated.

The disease is caused by a brain-invading parasite transmitted by bites of the , and gets its name from the of drowsiness and altered sleeping patterns that affect late-stage patients, along with other physical and neurological manifestations including and hallucinations that eventually lead to coma and death.

Despite numerous previous studies showing that animals can be infected with the parasite, the prevailing view has been that the disease persisted in its traditional areas almost only because of human-to-human transmission. A new study, from an international team of researchers led by the London School of Hygiene & Tropical Medicine, challenges this assumption by using a mathematical model to show that the disease not only can persist in an area even when there are no human cases, but probably requires the presence of infected wild animals to maintain the chain of transmission. The authors' model was based on data collected in active screening campaigns between November 1998 and February 1999 in the Bipindi area of Cameroon. One of the species in the data group was the White-eyelid mangabey, pictured below.

The research provides an attractive explanation for why sleeping sickness survives in places which have undergone intensive efforts to find and treat infected people in the community. It suggests that efforts to eliminate the disease must factor in the wild animal populations.

"This research suggests that targeting human populations alone, the main current control strategy, might not be enough to control the disease," says Sebastian Funk, the lead author of the study. "Maintenance of transmission in wild animal populations could explain the reappearance of sleeping sickness in humans after years without cases."

More information: Funk S, Nishiura H, Heesterbeek H, Edmunds WJ, Checchi F (2013) Identifying Transmission Cycles at the Human-Animal Interface: The Role of Animal Reservoirs in Maintaining Gambiense Human African Trypanosomiasis. PLoS Comput Biol 9(1): e1002855. doi:10.1371/journal.pcbi.1002855

add to favorites email to friend print save as pdf

Related Stories

Fly gut bacteria could control sleeping sickness

May 11, 2010

A new bacterial species, found in the gut of the fly that transmits African sleeping sickness, could be engineered to kill the parasite that causes the disease. The study, published in the International Journal of Systematic an ...

Revealing secrets of 'African sleeping sickness'

Oct 27, 2008

Scientists in the United Kingdom and Russia are reporting identification of a long-sought chink in the armor of the parasite that causes African sleeping sickness, a parasitic disease that kills at least 50,000 people each ...

Recommended for you

Senegal monitors contacts of 1st Ebola patient

3 hours ago

Senegalese authorities on Monday were monitoring everyone who was in contact with a student infected with Ebola who crossed into the country, and who has lost three family members to the disease.

Cerebral palsy may be hereditary

9 hours ago

Cerebral palsy is a neurological developmental disorder which follows an injury to the immature brain before, during or after birth. The resulting condition affects the child's ability to move and in some ...

19 new dengue cases in Japan, linked to Tokyo park

15 hours ago

Japan is urging local authorities to be on the lookout for further outbreaks of dengue fever, after confirming another 19 cases that were contracted at a popular local park in downtown Tokyo.

User comments