A new step towards the understanding of hearing

(Medical Xpress)—The results published in Nature Communications enables us to consider eventual therapeutic strategies to restore the sensorial innervation of the cochlea, an organ essential to hearing.

A GIGA-Neurosciences (University of Liège) team led by Dr Brigitte Malgrange and Jean Defourny has just identified several key proteins which intercede in the refinement of cochlear innervation. In the study published in Nature Communications the researchers show in particular that the aphrin-15 protein and its EphA4 receptor have complementary expression in the cochlea of developing mice, compatible with a role in the establishment of between and auditory neurones. The analysis of mice for which one or the other of these two proteins has been rendered inoperative shows major innervation flaws leading to a totally disrupted hearing capacity. The researchers have also identified intercellular cascades leading to this defective innervation and involving proteins such as ephexin, cofilin and type II myosin light chain kinase.

'Thus, for the first time, we have identified the molecular actors in the refinement of cochlear innervations, necessary for optimal hearing,' states Brigitte Malgrang.

The auditory part of the – the – is a very complex organism in which we find the organ of Corti, primarily made up of sensory cells connected to the spiral ganglion neurones, these neurones constituting the first relay station for the transmission of sound to the . Under the influence of numerous molecular signals – about which more is known following the results obtained by the ULg's GIGA-Neurosciences Unit – the development of the auditory system within vertebrates begins by the formation of the optic vesicle which will give birth to the sensory cells and spiral ganglion neurones. For functional hearing the fibres of the spiral ganglion's auditory neurones must be connected very precisely to sensory cells.

More information: Nature Communications, 05/02/2013. DOI: 10.1038/ncomms2445

Related Stories

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments