A new step towards the understanding of hearing

February 18, 2013

(Medical Xpress)—The results published in Nature Communications enables us to consider eventual therapeutic strategies to restore the sensorial innervation of the cochlea, an organ essential to hearing.

A GIGA-Neurosciences (University of Liège) team led by Dr Brigitte Malgrange and Jean Defourny has just identified several key proteins which intercede in the refinement of cochlear innervation. In the study published in Nature Communications the researchers show in particular that the aphrin-15 protein and its EphA4 receptor have complementary expression in the cochlea of developing mice, compatible with a role in the establishment of between and auditory neurones. The analysis of mice for which one or the other of these two proteins has been rendered inoperative shows major innervation flaws leading to a totally disrupted hearing capacity. The researchers have also identified intercellular cascades leading to this defective innervation and involving proteins such as ephexin, cofilin and type II myosin light chain kinase.

'Thus, for the first time, we have identified the molecular actors in the refinement of cochlear innervations, necessary for optimal hearing,' states Brigitte Malgrang.

The auditory part of the – the – is a very complex organism in which we find the organ of Corti, primarily made up of sensory cells connected to the spiral ganglion neurones, these neurones constituting the first relay station for the transmission of sound to the . Under the influence of numerous molecular signals – about which more is known following the results obtained by the ULg's GIGA-Neurosciences Unit – the development of the auditory system within vertebrates begins by the formation of the optic vesicle which will give birth to the sensory cells and spiral ganglion neurones. For functional hearing the fibres of the spiral ganglion's auditory neurones must be connected very precisely to sensory cells.

More information: Nature Communications, 05/02/2013. DOI: 10.1038/ncomms2445

Related Stories

Recommended for you

Crystal clear images uncover secrets of hormone receptors

July 31, 2015

Many hormones and neurotransmitters work by binding to receptors on a cell's exterior surface. This activates receptors causing them to twist, turn and spark chemical reactions inside cells. NIH scientists used atomic level ...

A cheaper, high-performance prosthetic knee

July 30, 2015

In the last two decades, prosthetic limb technology has grown by leaps and bounds. Today, the most advanced prostheses incorporate microprocessors that work with onboard gyroscopes, accelerometers, and hydraulics to enable ...

Flow means 'go' for proper lymph system development

July 27, 2015

The lymphatic system provides a slow flow of fluid from our organs and tissues into the bloodstream. It returns fluid and proteins that leak from blood vessels, provides passage for immune and inflammatory cells from the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.