In the brain, broken down 'motors' cause anxiety

February 7, 2013

When motors break down, getting where you want to go becomes a struggle. Problems arise in much the same way for critical brain receptors when the molecular motors they depend on fail to operate. Now, researchers reporting in Cell Reports on February 7, have shown these broken motors induce stress and anxiety in mice. The discovery may point the way to new kinds of drugs to treat anxiety and other disorders.

The study in mice focuses on one motor in particular, known as KIF13A, which, according to the new evidence, is responsible for ferrying serotonin receptors. Without proper transportation, those receptors fail to reach the surface of and, as a result, animals show signs of heightened anxiety.

In addition to their implications for understanding anxiety, the findings also suggest that defective molecular motors may be a more common and underappreciated cause of disease.

This video is not supported by your browser at this time.
This video (S3 in the paper) shows the transport defect of the serotonin receptor in a KIF13A knock out neuron compared with a wild type neuron. Credit: Cell Reports, Zhou et al.

"Most proteins are transported in vesicles or as protein complexes by molecular motors," said Nobutaka Hirokawa of the University of Tokyo. "As shown in this study, defective motors could cause many diseases."

Scientists know that serotonin and serotonin receptors are involved in anxiety, aggression, and mood. But not much is known about how those players get around within cells. When Hirokawa's team discovered KIF13A at high levels in the brain, they wondered what it did.

The researchers discovered that mice lacking KIF13A show greater anxiety in both open-field and maze tests and suggest that this anxious behavior may stem from an underlying loss of serotonin receptor transport, which leads to a lower level of expression of those receptors in critical .

"Collectively, our results suggest a role for this molecular motor in anxiety control," the researchers wrote. Hirokawa says the search should now be on for anti-anxiety aimed at restoring the brain's serotonin receptor transport service.

Explore further: Gatekeeper of brain steroid signals boosts emotional resilience to stress

More information: Cell Reports, Zhou et al.: "A Molecular Motor, KIF13A, Controls Anxiety by Transporting the Serotonin type 1a Receptor."

Related Stories

Recommended for you

An accessible approach to making a mini-brain

October 1, 2015

If you need a working miniature brain—say for drug testing, to test neural tissue transplants, or to experiment with how stem cells work—a new paper describes how to build one with what the Brown University authors say ...

Tension helps heart cells develop normally in the lab

October 1, 2015

The heart is never quite at rest, and it turns out that even in a lab heart cells need a little of that tension. Without something to pull against, heart cells grown from stem cells in a lab dish fail to develop normally.

Dormant viral genes may awaken to cause ALS

September 30, 2015

Scientists at the National Institutes of Health discovered that reactivation of ancient viral genes embedded in the human genome may cause the destruction of neurons in some forms of amyotrophic lateral sclerosis (ALS). The ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.