In the brain, broken down 'motors' cause anxiety

February 7, 2013

When motors break down, getting where you want to go becomes a struggle. Problems arise in much the same way for critical brain receptors when the molecular motors they depend on fail to operate. Now, researchers reporting in Cell Reports on February 7, have shown these broken motors induce stress and anxiety in mice. The discovery may point the way to new kinds of drugs to treat anxiety and other disorders.

The study in mice focuses on one motor in particular, known as KIF13A, which, according to the new evidence, is responsible for ferrying serotonin receptors. Without proper transportation, those receptors fail to reach the surface of and, as a result, animals show signs of heightened anxiety.

In addition to their implications for understanding anxiety, the findings also suggest that defective molecular motors may be a more common and underappreciated cause of disease.

This video is not supported by your browser at this time.
This video (S3 in the paper) shows the transport defect of the serotonin receptor in a KIF13A knock out neuron compared with a wild type neuron. Credit: Cell Reports, Zhou et al.

"Most proteins are transported in vesicles or as protein complexes by molecular motors," said Nobutaka Hirokawa of the University of Tokyo. "As shown in this study, defective motors could cause many diseases."

Scientists know that serotonin and serotonin receptors are involved in anxiety, aggression, and mood. But not much is known about how those players get around within cells. When Hirokawa's team discovered KIF13A at high levels in the brain, they wondered what it did.

The researchers discovered that mice lacking KIF13A show greater anxiety in both open-field and maze tests and suggest that this anxious behavior may stem from an underlying loss of serotonin receptor transport, which leads to a lower level of expression of those receptors in critical .

"Collectively, our results suggest a role for this molecular motor in anxiety control," the researchers wrote. Hirokawa says the search should now be on for anti-anxiety aimed at restoring the brain's serotonin receptor transport service.

Explore further: Gatekeeper of brain steroid signals boosts emotional resilience to stress

More information: Cell Reports, Zhou et al.: "A Molecular Motor, KIF13A, Controls Anxiety by Transporting the Serotonin type 1a Receptor." dx.doi.org/10.1016/j.celrep.2013.01.014

Related Stories

Recommended for you

Flu study, on hold, yields new vaccine technology

September 2, 2015

Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison in the ...

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.