Cervical cancer: First 3-D image of an HPV oncoprotein

(Medical Xpress)—For the first time, researchers from the Laboratoire biotechnologie et signalisation cellulaire at the Strasbourg-based Ecole supérieure de biotechnologie (CNRS/Université de Strasbourg) and Institut de génétique et de biologie moléculaire et cellulaire (CNRS/Université de Strasbourg/Inserm) have solved the three-dimensional structure of an important oncoprotein involved in cell proliferation and in the development of the human papilloma virus (HPV). Type 16 (HPV 16), which causes cervical cancer, is the most dangerous of human papilloma viruses. This work, published in Science on 8 February 2013, should make it possible to identify and improve medication to block the protein and prevent it from causing tumors.

is one of the most common cancers in the world, ranking second in terms of mortality among women. It is caused by so-called "high-risk" human papilloma viruses (HPV), of which type 16 (HPV 16) is the most dangerous. After infecting a healthy cell, HPV must stimulate it to multiply in order to reproduce itself. The E6 and E7 cause and the development of cervical cancer, which is why they are known as "oncoproteins".

For the first time, researcher Gilles Travé and his team at the laboratoire Biotechnologie et signalisation cellulaire (CNRS/University of Strasbourg) working in collaboration with researchers led by Jean Cavarelli and Bruno Keiffer of the Institut de génétique et de biologie moléculaire et cellulaire (CNRS/University of Strasbourg/) have solved the three-dimensional structures of E6 proteins in type-16 and its type 1 bovine equivalent (BPV 1). The same researchers had already solved the structure of E6 in HPV 16 in 2012, but this time the E6 proteins have been "caught" in the process of capturing target . The complete structure of an E6 protein—which is very tricky to produce in the laboratory—had remained unsolved for almost 30 years.

Success depended on two factors: the development of methods for isolating protein E6 as well as the use of nuclear magnetic resonance (NMR) and crystallography techniques. Having dealt with various aggregation and purification problems, the researchers succeeded in obtaining protein E6. The challenge then was to keep it in its folded form (so as to preserve its ability to organize itself and thus be biologically active). NMR and crystallography data made it possible to determine the structure of the E6 protein and obtain a high-resolution 3D "photograph".The three-dimensional structure of the E6 protein capturing its target reveals the exact molecular mechanism of its carcinogenic activity. It also explains the protein's remarkable ability to act as a viral terrorist and hijack many of the functions of the infected cell. This breakthrough is crucial for cervical cancer treatment, as it should make it possible to identify and improve medication to prevent the from causing tumors.

More information: Zanier, K. et al. Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins. Science, 8 February 2013, Vol. 339 no. 6120 pp. 694-698, DOI: 10.1126/science.1229934.

Journal information: Science
Provided by CNRS
Citation: Cervical cancer: First 3-D image of an HPV oncoprotein (2013, February 15) retrieved 24 April 2024 from https://medicalxpress.com/news/2013-02-cervical-cancer-d-image-hpv.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Cervical cancer and pre-cancer cervical growths require single HPV protein

 shares

Feedback to editors