Drug delivery strategy eliminates myotonia symptoms in mice with myotonic dystrophy

February 22, 2013
©2013, Mary Ann Liebert, Inc., publishers

By targeting the specific mutation that causes the hereditary neuromuscular disease myotonic dystrophy, it is possible to neutralize the mutant RNA toxicity and minimize or even eliminate the disabling symptoms of the disease. New classes of drugs called antisense oligonucleotides are being designed to achieve this. Innovative work to develop a modified antisense drug that can be administered intravenously and achieve the desired therapeutic effect is described in an article in Nucleic Acid Therapeutics.

Andrew Leger and coauthors from Genzyme, a Sanofi Company (Framingham, MA) added a peptide to an oligonucleotide strand designed to bind to and inactivate the mutated RNA region associated with myotonic dystrophy type 1 (DM1). The disease can affect function of the heart, , and , and a characteristic symptom is myotonia, in which muscles are slow to relax following contraction.

In the article "Systemic Delivery of Peptide-Linked Morpholino Oligonucleotide Neutralizes Mutant RNA Toxicity in a Mouse Model of Myotonic Dystrophy," the authors describe how the peptide is intended to enable systemic delivery of the drug, protecting it from being damaged or destroyed in the body before it can reach its target, the muscles. They report that intravenous introduction of the drug in a mouse model of DM1 led to good biodistribution of the drug, evidence that the problems previously caused by RNA toxicity were corrected, and complete elimination of myotonia in the treated mice.

"One of the greatest challenges to the therapeutic use of is effective and safe delivery," says Executive Editor Fintan Steele, PhD, SomaLogic, Inc., Boulder, CO. "The work of Leger and his colleagues demonstrates a potentially powerful way to meet that challenge for many diseases."

More information: The article is available free on the Nucleic Acid Therapeutics website.

Related Stories

Antisense oligonucleotides make sense in myotonic dystrophy

February 27, 2012

Antisense oligonucleotides – short segments of genetic material designed to target specific areas of a gene or chromosome – that activated an enzyme to "chew up" toxic RNA (ribonucleic acid) could point the way ...

Recommended for you

Experimental MERS vaccine shows promise in animal studies

July 28, 2015

A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines. ...

Can social isolation fuel epidemics?

July 21, 2015

Conventional wisdom has it that the more people stay within their own social groups and avoid others, the less likely it is small disease outbreaks turn into full-blown epidemics. But the conventional wisdom is wrong, according ...

Lack of knowledge on animal disease leaves humans at risk

July 20, 2015

Researchers from the University of Sydney have painted the most detailed picture to date of major infectious diseases shared between wildlife and livestock, and found a huge gap in knowledge about diseases which could spread ...

IBD genetically similar in Europeans and non-Europeans

July 20, 2015

The first genetic study of inflammatory bowel disease (IBD) to include individuals from diverse populations has shown that the regions of the genome underlying the disease are consistent around the world. This study, conducted ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.