New flu drug stops virus in its tracks

This figure shows the life cycle of the flu virus and how the new flu drug agent prevents the virus from spreading from cell to cell by irreversibly inhibiting the action of the neuraminidase like a broken key left in a lock. Credit: Tom Wennekes, UBC

A new class of influenza drug has been shown effective against drug-resistant strains of the flu virus, according to a study led by University of British Columbia researchers.

Published online today in the journal , the study details the development of a new drug candidate that prevents the from spreading from one cell to the next. The drug is shown to successfully treat mice with lethal strains of the flu virus.

In order to spread in the body, the flu virus (blue) first uses a protein, called hemagglutinin, to bind to the receptors (green) on a healthy cell (red).

In order to spread in the body, the flu virus first uses a protein, called hemagglutinin, to bind to the healthy cell's receptors. Once it has inserted its RNA and replicated, the virus uses an enzyme, called neuraminidase, to sever the connection and move on to the next healthy cell.

"Our drug agent uses the same approach as current flu treatments – by preventing neuraminidase from cutting its ties with the infected cell," says UBC Chemistry Prof. Steve Withers, the study's senior author. "But our agent latches onto this enzyme like a broken key, stuck in a lock, rendering it useless."

The estimates that influenza affects three to five million people globally each year, causing 250,000 to 500,000 deaths. In some pandemic years, the figure rose to millions.

This video is not supported by your browser at this time.

"One of the major challenges of the current flu treatments is that new strains of the flu virus are becoming resistant, leaving us vulnerable to the next pandemic," says Withers, whose team includes researchers from Canada, the UK, and Australia.

"By taking advantage of the virus's own 'molecular machinery' to attach itself," Withers adds. "The new drug could remain effective longer, since resistant cannot arise without destroying their own mechanism for infection."

More information: "Mechanism-Based Covalent Neuraminidase Inhibitors with Broad Spectrum Influenza Antiviral Activity," by J.-H; Kim et al, Science, 2013.

Related Stories

FDA approves first 4-in-1 flu vaccine

Feb 29, 2012

Federal health officials have approved the first vaccine that protects against four strains of the common flu, offering one additional layer of protection against the influenza virus that affects millions each year.

Why do some influenza virus subtypes die out?

Nov 14, 2011

Every so often we hear about a new strain of influenza virus which has appeared and in some cases may sweep across the globe in a pandemic, much as the H1N1 virus did last year. What happens to the old seasonal viruses? In ...

Fast and sensitive flu tracking

Jun 15, 2012

A practical means of tracking pandemic flu in the field—using an assay known as RT-SmartAmp—was developed recently by a research team in Japan led by Toshihisa Ishikawa at the RIKEN Omics Science ...

Recommended for you

The impact of bacteria in our guts

4 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

4 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

5 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

23 hours ago

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments