Whole genome sequencing better at tracing TB outbreaks than standard test

A new form of genetic testing of the bacteria that causes tuberculosis can provide better information on TB transmission and also trace TB outbreaks more accurately than the current standard test, according to a study from Germany published in this week's PLOS Medicine.

A team of researchers led by Stefan Niemann from Forschungszentrum Borstel, Molecular Mycobacteriology, compared the results of the two types of tests on 86 M. tuberculosis isolates from a TB outbreak in the German states of Hamburg and Schleswig-Holstein between 1997 and 2010, in which 2301 people were diseased in the study period.

They found that the new test () provided more accurate information on clustering and longitudinal spread of the pathogen than the standard test (classical genotyping). Importantly, whole genome sequencing revealed that first outbreak isolates were falsely clustered by classical genotyping and do not belong to one recent .

By using whole genome sequencing, the authors estimated that the genetic material of M. tuberculosis evolved at a rate at 0.4 mutations per genome per year, suggesting that the bacterium grows in its natural host (infected people) with a doubling time of 22 hours, or 400 generations per year. This finding about the evolution of M. tuberculosis indicates how information from whole genome sequencing can be used to help trace future outbreaks.

Importantly, as the costs of whole genome sequencing are declining, this test could soon become the standard method for identifying transmission patterns and rates of infectious disease outbreaks.

The authors say: "Our study demonstrates that whole genome sequencing-based typing provides epidemiologically relevant resolution of large, longitudinal [] outbreaks much more efficiently than classical ."

They continue: "We envision that [whole genome sequencing] progressive effective implementation will be accelerated by the continuously decreasing sequencing costs, broader distribution of so-called bench top genome sequencers, and upcoming bioinformatics developments to facilitate quick and relevant interpretation of the resulting data in public health and medical contexts."

More information: PLoS Med 10(2): e1001387. doi:10.1371/journal.pmed.1001387

Related Stories

TB outbreaks could be 'solved' by DNA tracking

Sep 03, 2012

Reconstructing the spread of killer diseases such as tuberculosis (TB) from person to person using DNA sequencing quickly identifies the origin and movement of pathogens. This approach is directly informing ...

Recommended for you

Obama addresses West Africans on facts about Ebola

6 hours ago

President Barack Obama urged West Africans on Tuesday to wear gloves and masks when caring for Ebola patients or burying anyone who died of the disease. He also discouraged the traditional burial practice ...

Gluten-free diet benefits asymptomatic EmA+ adults

6 hours ago

(HealthDay)—Asymptomatic individuals with endomysial antibodies (EmA) benefit from a gluten-free diet (GFD), according to a study published in the September issue of Gastroenterology.

Another US health worker infected with Ebola

7 hours ago

A third American health worker has tested positive for the Ebola virus while working with patients in West Africa, the Christian missionary group SIM said Tuesday.

UN implores all countries to help on Ebola

9 hours ago

The international group Doctor Without Borders warned Tuesday that the world is 'losing the battle' against Ebola, while U.N. officials implored all countries to quickly step up their response by contributing health experts ...

Travel restrictions could worsen Ebola crisis: experts

13 hours ago

Travel restrictions could worsen West Africa's Ebola epidemic, limiting medical and food supplies and keeping out much-needed doctors, virologists said Tuesday as the disease continued its deadly spread.

User comments