Human cognition depends upon slow-firing neurons

February 20, 2013

Good mental health and clear thinking depend upon our ability to store and manipulate thoughts on a sort of "mental sketch pad." In a new study, Yale School of Medicine researchers describe the molecular basis of this ability—the hallmark of human cognition—and describe how a breakdown of the system contributes to diseases such as schizophrenia and Alzheimer's disease.

"Insults to these highly evolved cortical circuits impair the ability to create and maintain our mental representations of the world, which is the basis of higher cognition," said Amy Arnsten, professor of neurobiology and senior author of the paper published in the Feb. 20 issue of the journal Neuron.

High-order thinking depends upon our ability to generate in our brains without any sensory stimulation from the environment. These cognitive abilities arise from highly evolved circuits in the prefrontal cortex. Mathematical models by former Yale neurobiologist Xiao-Jing Wang, now of New York University, predicted that in order to maintain these the must rely on a family of receptors that allow for slow, steady firing of neurons. The Yale scientists show that NMDA-NR2B receptors involved in glutamate signaling regulate this neuronal firing. These receptors, studied at Yale for more than a decade, are responsible for activity of highly evolved found especially in primates.

Earlier studies have shown these types of are often altered in patients with schizophrenia. The Neuron study suggests that those suffering from the disease may be unable to hold onto a stable view of the world. Also, these receptors seem to be altered in Alzheimer's patients, which may contribute to the cognitive deficits of dementia.

The lab of Dr. John Krystal, chair of the department of psychiatry at Yale, has found that the anesthetic ketamine, abused as a street drug, blocks NMDA receptors and can mimic some of the symptoms of schizophrenia. The current study in Neuron shows that ketamine may reduce the firing of the same higher-order neural circuits that are decimated in schizophrenia.

"Identifying the receptor needed for higher cognition may help us to understand why certain genetic insults lead to cognitive impairment and will help us to develop strategies for treating these debilitating disorders," Arnsten said.

Explore further: Researchers show how memory is lost -- and found

Related Stories

Recommended for you

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.