Human memory study adds to global debate

A range of conditions can affect memory, such as Alzheimer's disease and ageing. Credit: 2010 The University of Adelaide

(Medical Xpress)—An international study involving researchers from the University of Adelaide has made a major contribution to the ongoing scientific debate about how processes in the human brain support memory and recognition.

The study used a rare technique in which data was obtained from within the brain itself, using electrodes placed inside the brains of .

Obtained in Germany, the data was sent to the University of Adelaide's School of Psychology for further analysis using new techniques developed there. The results are published today in the (PNAS).

"Being able to understand how works is important because there is a range of conditions that affect memory, such as Alzheimer's disease, head injury, and ageing," says Professor John Dunn, Head of the School of Psychology at the University of Adelaide and a co-author of the study, which was led by researchers at the universities of Cambridge, UK, and Bonn, Germany.

"Scientists know a lot about memory from years of study, but there is an ongoing debate about how certain mechanisms in the brain process memory, and how those mechanisms work together.

"What we're looking at is how the human brain processes '', which is our ability to recognise people, objects or events that we've encountered in the past."

The debate has centered on two key regions in the brain:

  • the hippocampus, which is very important to memory and is one of the first regions of the brain to suffer damage from Alzheimer's disease; and
  • the perirhinal cortex, which receives sensory information from all of the body's sensory regions.
"The debate is whether or not these two regions work in the same or different ways to support memory and recognition Studies over the years have led to both conclusions," Professor Dunn says.

He says this new study, which uses data from inside the brain instead of from electrodes on the scalp, far from the critical regions, revealed that different processes are at work in the and the .

"Our analysis shows that these regions are responding to and processing memory in two very different ways. The activity levels in those regions changed in different ways according to the amount of information that could be remembered," Professor Dunn says.

"This study won't settle the debate once and for all, but it does add weight to those scientists who believe that these two distinct parts of the brain respond to in different ways," he says.

add to favorites email to friend print save as pdf

Related Stories

New insight into Alzheimer’s disease

Dec 24, 2008

(PhysOrg.com) -- A new molecule important in a part of the memory that allows recognition of people has been identified by researchers at the University of Bristol. This type of memory is impaired at an early ...

Recommended for you

Neural spines operate like miniature neurons

17 minutes ago

Nerve cells use a much larger repertoire of data-processing structures than previously thought. Research at LMU and in Regensburg shows that the so-called spines on the dendritic processes of neurons are ...

The brain's electrical alphabet

Jan 23, 2015

The brain's alphabet is a mix of rate and precise timing of electrical pulses: the observation was made by researchers at the International School for Advanced Studies (SISSA) of Trieste and the Italian Institute ...

Dragnet for epilepsy genes

Jan 23, 2015

An international team of scientists together with the University of Bonn Hospital have taken a new path in the research into causes of epilepsy: The researchers determined the networks of the active genes ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.