Injection-free vaccination technique could address global vaccine challenge for HIV, malaria

February 4, 2013

Scientists at King's College London have demonstrated the ability to deliver a dried live vaccine to the skin without a traditional needle, and shown for the first time that this technique is powerful enough to enable specialised immune cells in the skin to kick-start the immunising properties of the vaccine.

Funded by the Bill & Melinda Gates Foundation and published today in Proceedings of the National Academy of Sciences, researchers say although it is an early study this important technical advance offers a potential solution to the challenges of delivering live vaccines in resource-limited countries globally, without the need for refrigeration. A cheaper alternative to hypodermic needles, it would also remove safety risks from needle contamination and the pain-free administration could lead to more people taking up a vaccination. The researchers add that it could have an impact beyond infectious disease vaccination programmes, for example managing autoimmune and inflammatory conditions such as diabetes.

HIV, malaria and TB represent major global health challenges. Although promising research is underway to develop vaccines for these diseases, considerable stumbling blocks remain for countries where transporting and storing live vaccines in a continuously cold environment (around 2°C to 8°C or below) would not be possible. If a cold chain cannot be maintained for a live vaccine there is a high risk it could become unsafe and lose effectiveness.

The team at King's used a silicone mould developed by US company TheraJect to create a microneedle array – a tiny disc with several micro-needles made of sugar which dissolve when inserted into the skin. The team formulated a dried version of a live modified adenovirus-based candidate HIV vaccine in sugar (sucrose) and used the mould to create the microneedle array. They found that the dried live vaccine remained stable and effective at room temperature.

To test the effectiveness of the microneedle array, they applied it to mice. Using imaging (in collaboration with Professor Frederic Geissmann, King's College London) they observed how the vaccine dissolved in the skin and were able to identify for the first time exactly which specialised in the skin 'pick up' this type of vaccine and activate the immune system. The researchers found the first evidence that a sub-set of specialised dendritic cells in the skin were responsible for triggering this immune response.

When compared with a traditional needle vaccine method, the immune response generated by the dried microneedle vaccine (kept at room temperature) was equivalent to that induced by the same dose of injected liquid vaccine that had been preserved at -80°C.

Dr Linda Klavinskis from the Peter Gorer Department of Immunobiology at King's College London, said: 'We have shown that it is possible to maintain the effectiveness of a live vaccine by drying it in sugar and applying it to the skin using microneedles – a potentially painless alternative to hypodermic needles. We have also uncovered the role of specific cells in the skin which act as a surveillance system, picking up the by this delivery system and kick-starting the body's immune processes.

'This work opens up the exciting possibility of being able to deliver live vaccines in a global context, without the need for refrigeration. It could potentially reduce the cost of manufacturing and transportation, improve safety (as there would be no loss in potency), and avoids the need of hypodermic needle injection, reducing the risk of transmitting blood-borne disease from contaminated needles and syringes.

'This new technique represents a huge leap forward in overcoming the challenges of delivering a vaccination programme for diseases such as HIV and malaria. But these findings may also have wider implications for other infectious disease vaccination programmes, for example infant vaccinations, or even other inflammatory and autoimmune conditions such as diabetes.'

Explore further: Flu vaccine given in microneedle skin patches proves effective in mice

Related Stories

Could targeting the skin help prevent the spread of HIV?

July 11, 2011

Applying a vaccine patch to the skin with thousands of tiny micro-needles could help boost the body's immune response and prevent the spread of life-threatening infections like HIV and TB, a major Cardiff University study ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.